home *** CD-ROM | disk | FTP | other *** search
Text File | 2000-06-12 | 274.5 KB | 5,898 lines |
- /*****************************************************************************/
- /* */
- /* 888888888 ,o, / 888 */
- /* 888 88o88o " o8888o 88o8888o o88888o 888 o88888o */
- /* 888 888 888 88b 888 888 888 888 888 d888 88b */
- /* 888 888 888 o88^o888 888 888 "88888" 888 8888oo888 */
- /* 888 888 888 C888 888 888 888 / 888 q888 */
- /* 888 888 888 "88o^888 888 888 Cb 888 "88oooo" */
- /* "8oo8D */
- /* */
- /* A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator. */
- /* (triangle.c) */
- /* */
- /* Version 1.3 */
- /* July 19, 1996 */
- /* */
- /* Copyright 1996 */
- /* Jonathan Richard Shewchuk */
- /* School of Computer Science */
- /* Carnegie Mellon University */
- /* 5000 Forbes Avenue */
- /* Pittsburgh, Pennsylvania 15213-3891 */
- /* jrs@cs.cmu.edu */
- /* Severely stripped by SG to reduce size ************************************/
- /* */
- /* This program may be freely redistributed under the condition that the */
- /* copyright notices (including this entire header and the copyright */
- /* notice printed when the `-h' switch is selected) are not removed, and */
- /* no compensation is received. Private, research, and institutional */
- /* use is free. You may distribute modified versions of this code UNDER */
- /* THE CONDITION THAT THIS CODE AND ANY MODIFICATIONS MADE TO IT IN THE */
- /* SAME FILE REMAIN UNDER COPYRIGHT OF THE ORIGINAL AUTHOR, BOTH SOURCE */
- /* AND OBJECT CODE ARE MADE FREELY AVAILABLE WITHOUT CHARGE, AND CLEAR */
- /* NOTICE IS GIVEN OF THE MODIFICATIONS. Distribution of this code as */
- /* part of a commercial system is permissible ONLY BY DIRECT ARRANGEMENT */
- /* WITH THE AUTHOR. (If you are not directly supplying this code to a */
- /* customer, and you are instead telling them how they can obtain it for */
- /* free, then you are not required to make any arrangement with me.) */
- /* */
- /* Hypertext instructions for Triangle are available on the Web at */
- /* */
- /* http://www.cs.cmu.edu/~quake/triangle.html */
- /* */
- /* Some of the references listed below are marked [*]. These are available */
- /* for downloading from the Web page */
- /* */
- /* http://www.cs.cmu.edu/~quake/triangle.research.html */
- /* */
- /* A paper discussing some aspects of Triangle is available. See Jonathan */
- /* Richard Shewchuk, "Triangle: Engineering a 2D Quality Mesh Generator */
- /* and Delaunay Triangulator," First Workshop on Applied Computational */
- /* Geometry, ACM, May 1996. [*] */
- /* */
- /* Triangle was created as part of the Archimedes project in the School of */
- /* Computer Science at Carnegie Mellon University. Archimedes is a */
- /* system for compiling parallel finite element solvers. For further */
- /* information, see Anja Feldmann, Omar Ghattas, John R. Gilbert, Gary L. */
- /* Miller, David R. O'Hallaron, Eric J. Schwabe, Jonathan R. Shewchuk, */
- /* and Shang-Hua Teng, "Automated Parallel Solution of Unstructured PDE */
- /* Problems." To appear in Communications of the ACM, we hope. */
- /* */
- /* The quality mesh generation algorithm is due to Jim Ruppert, "A */
- /* Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh */
- /* Generation," Journal of Algorithms 18(3):548-585, May 1995. [*] */
- /* */
- /* My implementation of the divide-and-conquer and incremental Delaunay */
- /* triangulation algorithms follows closely the presentation of Guibas */
- /* and Stolfi, even though I use a triangle-based data structure instead */
- /* of their quad-edge data structure. (In fact, I originally implemented */
- /* Triangle using the quad-edge data structure, but switching to a */
- /* triangle-based data structure sped Triangle by a factor of two.) The */
- /* mesh manipulation primitives and the two aforementioned Delaunay */
- /* triangulation algorithms are described by Leonidas J. Guibas and Jorge */
- /* Stolfi, "Primitives for the Manipulation of General Subdivisions and */
- /* the Computation of Voronoi Diagrams," ACM Transactions on Graphics */
- /* 4(2):74-123, April 1985. */
- /* */
- /* Their O(n log n) divide-and-conquer algorithm is adapted from Der-Tsai */
- /* Lee and Bruce J. Schachter, "Two Algorithms for Constructing the */
- /* Delaunay Triangulation," International Journal of Computer and */
- /* Information Science 9(3):219-242, 1980. The idea to improve the */
- /* divide-and-conquer algorithm by alternating between vertical and */
- /* horizontal cuts was introduced by Rex A. Dwyer, "A Faster Divide-and- */
- /* Conquer Algorithm for Constructing Delaunay Triangulations," */
- /* Algorithmica 2(2):137-151, 1987. */
- /* */
- /* The incremental insertion algorithm was first proposed by C. L. Lawson, */
- /* "Software for C1 Surface Interpolation," in Mathematical Software III, */
- /* John R. Rice, editor, Academic Press, New York, pp. 161-194, 1977. */
- /* For point location, I use the algorithm of Ernst P. Mucke, Isaac */
- /* Saias, and Binhai Zhu, "Fast Randomized Point Location Without */
- /* Preprocessing in Two- and Three-dimensional Delaunay Triangulations," */
- /* Proceedings of the Twelfth Annual Symposium on Computational Geometry, */
- /* ACM, May 1996. [*] If I were to randomize the order of point */
- /* insertion (I currently don't bother), their result combined with the */
- /* result of Leonidas J. Guibas, Donald E. Knuth, and Micha Sharir, */
- /* "Randomized Incremental Construction of Delaunay and Voronoi */
- /* Diagrams," Algorithmica 7(4):381-413, 1992, would yield an expected */
- /* O(n^{4/3}) bound on running time. */
- /* */
- /* The O(n log n) sweepline Delaunay triangulation algorithm is taken from */
- /* Steven Fortune, "A Sweepline Algorithm for Voronoi Diagrams", */
- /* Algorithmica 2(2):153-174, 1987. A random sample of edges on the */
- /* boundary of the triangulation are maintained in a splay tree for the */
- /* purpose of point location. Splay trees are described by Daniel */
- /* Dominic Sleator and Robert Endre Tarjan, "Self-Adjusting Binary Search */
- /* Trees," Journal of the ACM 32(3):652-686, July 1985. */
- /* */
- /* The algorithms for exact computation of the signs of determinants are */
- /* described in Jonathan Richard Shewchuk, "Adaptive Precision Floating- */
- /* Point Arithmetic and Fast Robust Geometric Predicates," Technical */
- /* Report CMU-CS-96-140, School of Computer Science, Carnegie Mellon */
- /* University, Pittsburgh, Pennsylvania, May 1996. [*] (Submitted to */
- /* Discrete & Computational Geometry.) An abbreviated version appears as */
- /* Jonathan Richard Shewchuk, "Robust Adaptive Floating-Point Geometric */
- /* Predicates," Proceedings of the Twelfth Annual Symposium on Computa- */
- /* tional Geometry, ACM, May 1996. [*] Many of the ideas for my exact */
- /* arithmetic routines originate with Douglas M. Priest, "Algorithms for */
- /* Arbitrary Precision Floating Point Arithmetic," Tenth Symposium on */
- /* Computer Arithmetic, 132-143, IEEE Computer Society Press, 1991. [*] */
- /* Many of the ideas for the correct evaluation of the signs of */
- /* determinants are taken from Steven Fortune and Christopher J. Van Wyk, */
- /* "Efficient Exact Arithmetic for Computational Geometry," Proceedings */
- /* of the Ninth Annual Symposium on Computational Geometry, ACM, */
- /* pp. 163-172, May 1993, and from Steven Fortune, "Numerical Stability */
- /* of Algorithms for 2D Delaunay Triangulations," International Journal */
- /* of Computational Geometry & Applications 5(1-2):193-213, March-June */
- /* 1995. */
- /* */
- /* For definitions of and results involving Delaunay triangulations, */
- /* constrained and conforming versions thereof, and other aspects of */
- /* triangular mesh generation, see the excellent survey by Marshall Bern */
- /* and David Eppstein, "Mesh Generation and Optimal Triangulation," in */
- /* Computing and Euclidean Geometry, Ding-Zhu Du and Frank Hwang, */
- /* editors, World Scientific, Singapore, pp. 23-90, 1992. */
- /* */
- /* The time for incrementally adding PSLG (planar straight line graph) */
- /* segments to create a constrained Delaunay triangulation is probably */
- /* O(n^2) per segment in the worst case and O(n) per edge in the common */
- /* case, where n is the number of triangles that intersect the segment */
- /* before it is inserted. This doesn't count point location, which can */
- /* be much more expensive. (This note does not apply to conforming */
- /* Delaunay triangulations, for which a different method is used to */
- /* insert segments.) */
- /* */
- /* The time for adding segments to a conforming Delaunay triangulation is */
- /* not clear, but does not depend upon n alone. In some cases, very */
- /* small features (like a point lying next to a segment) can cause a */
- /* single segment to be split an arbitrary number of times. Of course, */
- /* floating-point precision is a practical barrier to how much this can */
- /* happen. */
- /* */
- /* The time for deleting a point from a Delaunay triangulation is O(n^2) in */
- /* the worst case and O(n) in the common case, where n is the degree of */
- /* the point being deleted. I could improve this to expected O(n) time */
- /* by "inserting" the neighboring vertices in random order, but n is */
- /* usually quite small, so it's not worth the bother. (The O(n) time */
- /* for random insertion follows from L. Paul Chew, "Building Voronoi */
- /* Diagrams for Convex Polygons in Linear Expected Time," Technical */
- /* Report PCS-TR90-147, Department of Mathematics and Computer Science, */
- /* Dartmouth College, 1990. */
- /* */
- /* Ruppert's Delaunay refinement algorithm typically generates triangles */
- /* at a linear rate (constant time per triangle) after the initial */
- /* triangulation is formed. There may be pathological cases where more */
- /* time is required, but these never arise in practice. */
- /* */
- /* The segment intersection formulae are straightforward. If you want to */
- /* see them derived, see Franklin Antonio. "Faster Line Segment */
- /* Intersection." In Graphics Gems III (David Kirk, editor), pp. 199- */
- /* 202. Academic Press, Boston, 1992. */
- /* */
- /* If you make any improvements to this code, please please please let me */
- /* know, so that I may obtain the improvements. Even if you don't change */
- /* the code, I'd still love to hear what it's being used for. */
- /* */
- /* Disclaimer: Neither I nor Carnegie Mellon warrant this code in any way */
- /* whatsoever. This code is provided "as-is". Use at your own risk. */
- /* */
- /*****************************************************************************/
-
- /* On some machines, the exact arithmetic routines might be defeated by the */
- /* use of internal extended precision floating-point registers. Sometimes */
- /* this problem can be fixed by defining certain values to be volatile, */
- /* thus forcing them to be stored to memory and rounded off. This isn't */
- /* a great solution, though, as it slows Triangle down. */
- /* */
- /* To try this out, write "#define INEXACT volatile" below. Normally, */
- /* however, INEXACT should be defined to be nothing. ("#define INEXACT".) */
-
- #define INEXACT
-
- /* For efficiency, a variety of data structures are allocated in bulk. The */
- /* following constants determine how many of each structure is allocated */
- /* at once. */
-
- #define TRIPERBLOCK 4092 /* Number of triangles allocated at once. */
- #define SHELLEPERBLOCK 508 /* Number of shell edges allocated at once. */
- #define POINTPERBLOCK 4092 /* Number of points allocated at once. */
- #define VIRUSPERBLOCK 1020 /* Number of virus triangles allocated at once. */
-
- /* The point marker DEADPOINT is an arbitrary number chosen large enough to */
- /* (hopefully) not conflict with user boundary markers. Make sure that it */
- /* is small enough to fit into your machine's integer size. */
- #define DEADPOINT -1073741824
-
- /* Used for the point location scheme of Mucke, Saias, and Zhu, to decide */
- /* how large a random sample of triangles to inspect. */
- #define SAMPLEFACTOR 11
-
- /* A number that speaks for itself, every kissable digit. */
- #define PI 3.141592653589793238462643383279502884197169399375105820974944592308
-
- // Patch SG pour intégration MSVC6 / projet sKulpt
- #define STRICT
- extern void vTrace(char *Str, ...);
- #include <stdlib.h>
- // End patch
-
- #include <stdio.h>
- #include <string.h>
- #include <math.h>
- #include "triangulator.h"
-
- /* A few forward declarations. */
- void poolrestart(struct memorypool *pool);
-
- /* Labels that signify whether a record consists primarily of pointers or of */
- /* floating-point words. Used to make decisions about data alignment. */
-
- enum wordtype {POINTER, FLOATINGPOINT};
-
- /* Labels that signify the result of point location. The result of a */
- /* search indicates that the point falls in the interior of a triangle, on */
- /* an edge, on a vertex, or outside the mesh. */
-
- enum locateresult {INTRIANGLE, ONEDGE, ONVERTEX, OUTSIDE};
-
- /* Labels that signify the result of site insertion. The result indicates */
- /* that the point was inserted with complete success, was inserted but */
- /* encroaches on a segment, was not inserted because it lies on a segment, */
- /* or was not inserted because another point occupies the same location. */
-
- enum insertsiteresult {SUCCESSFULPOINT, VIOLATINGPOINT, DUPLICATEPOINT};
-
- /* Labels that signify the result of direction finding. The result */
- /* indicates that a segment connecting the two query points falls within */
- /* the direction triangle, along the left edge of the direction triangle, */
- /* or along the right edge of the direction triangle. */
-
- enum finddirectionresult {WITHIN, LEFTCOLLINEAR, RIGHTCOLLINEAR};
-
- /*****************************************************************************/
- /* */
- /* The basic mesh data structures */
- /* */
- /* There are three: points, triangles, and shell edges (abbreviated */
- /* `shelle'). These three data structures, linked by pointers, comprise */
- /* the mesh. A point simply represents a point in space and its properties.*/
- /* A triangle is a triangle. A shell edge is a special data structure used */
- /* to represent impenetrable segments in the mesh (including the outer */
- /* boundary, boundaries of holes, and internal boundaries separating two */
- /* triangulated regions). Shell edges represent boundaries defined by the */
- /* user that triangles may not lie across. */
- /* */
- /* A triangle consists of a list of three vertices, a list of three */
- /* adjoining triangles, a list of three adjoining shell edges (when shell */
- /* edges are used), an arbitrary number of optional user-defined floating- */
- /* point attributes, and an optional area constraint. The latter is an */
- /* upper bound on the permissible area of each triangle in a region, used */
- /* for mesh refinement. */
- /* */
- /* For a triangle on a boundary of the mesh, some or all of the neighboring */
- /* triangles may not be present. For a triangle in the interior of the */
- /* mesh, often no neighboring shell edges are present. Such absent */
- /* triangles and shell edges are never represented by NULL pointers; they */
- /* are represented by two special records: `dummytri', the triangle that */
- /* fills "outer space", and `dummysh', the omnipresent shell edge. */
- /* `dummytri' and `dummysh' are used for several reasons; for instance, */
- /* they can be dereferenced and their contents examined without causing the */
- /* memory protection exception that would occur if NULL were dereferenced. */
- /* */
- /* However, it is important to understand that a triangle includes other */
- /* information as well. The pointers to adjoining vertices, triangles, and */
- /* shell edges are ordered in a way that indicates their geometric relation */
- /* to each other. Furthermore, each of these pointers contains orientation */
- /* information. Each pointer to an adjoining triangle indicates which face */
- /* of that triangle is contacted. Similarly, each pointer to an adjoining */
- /* shell edge indicates which side of that shell edge is contacted, and how */
- /* the shell edge is oriented relative to the triangle. */
- /* */
- /* Shell edges are found abutting edges of triangles; either sandwiched */
- /* between two triangles, or resting against one triangle on an exterior */
- /* boundary or hole boundary. */
- /* */
- /* A shell edge consists of a list of two vertices, a list of two */
- /* adjoining shell edges, and a list of two adjoining triangles. One of */
- /* the two adjoining triangles may not be present (though there should */
- /* always be one), and neighboring shell edges might not be present. */
- /* Shell edges also store a user-defined integer "boundary marker". */
- /* Typically, this integer is used to indicate what sort of boundary */
- /* conditions are to be applied at that location in a finite element */
- /* simulation. */
- /* */
- /* Like triangles, shell edges maintain information about the relative */
- /* orientation of neighboring objects. */
- /* */
- /* Points are relatively simple. A point is a list of floating point */
- /* numbers, starting with the x, and y coordinates, followed by an */
- /* arbitrary number of optional user-defined floating-point attributes, */
- /* followed by an integer boundary marker. During the segment insertion */
- /* phase, there is also a pointer from each point to a triangle that may */
- /* contain it. Each pointer is not always correct, but when one is, it */
- /* speeds up segment insertion. These pointers are assigned values once */
- /* at the beginning of the segment insertion phase, and are not used or */
- /* updated at any other time. Edge swapping during segment insertion will */
- /* render some of them incorrect. Hence, don't rely upon them for */
- /* anything. For the most part, points do not have any information about */
- /* what triangles or shell edges they are linked to. */
- /* */
- /*****************************************************************************/
-
- /*****************************************************************************/
- /* */
- /* Handles */
- /* */
- /* The oriented triangle (`triedge') and oriented shell edge (`edge') data */
- /* structures defined below do not themselves store any part of the mesh. */
- /* The mesh itself is made of `triangle's, `shelle's, and `point's. */
- /* */
- /* Oriented triangles and oriented shell edges will usually be referred to */
- /* as "handles". A handle is essentially a pointer into the mesh; it */
- /* allows you to "hold" one particular part of the mesh. Handles are used */
- /* to specify the regions in which one is traversing and modifying the mesh.*/
- /* A single `triangle' may be held by many handles, or none at all. (The */
- /* latter case is not a memory leak, because the triangle is still */
- /* connected to other triangles in the mesh.) */
- /* */
- /* A `triedge' is a handle that holds a triangle. It holds a specific side */
- /* of the triangle. An `edge' is a handle that holds a shell edge. It */
- /* holds either the left or right side of the edge. */
- /* */
- /* Navigation about the mesh is accomplished through a set of mesh */
- /* manipulation primitives, further below. Many of these primitives take */
- /* a handle and produce a new handle that holds the mesh near the first */
- /* handle. Other primitives take two handles and glue the corresponding */
- /* parts of the mesh together. The exact position of the handles is */
- /* important. For instance, when two triangles are glued together by the */
- /* bond() primitive, they are glued by the sides on which the handles lie. */
- /* */
- /* Because points have no information about which triangles they are */
- /* attached to, I commonly represent a point by use of a handle whose */
- /* origin is the point. A single handle can simultaneously represent a */
- /* triangle, an edge, and a point. */
- /* */
- /*****************************************************************************/
-
- /* The triangle data structure. Each triangle contains three pointers to */
- /* adjoining triangles, plus three pointers to vertex points, plus three */
- /* pointers to shell edges (defined below; these pointers are usually */
- /* `dummysh'). It may or may not also contain user-defined attributes */
- /* and/or a floating-point "area constraint". It may also contain extra */
- /* pointers for nodes, when the user asks for high-order elements. */
- /* Because the size and structure of a `triangle' is not decided until */
- /* runtime, I haven't simply defined the type `triangle' to be a struct. */
-
- typedef double **triangle; /* Really: typedef triangle *triangle */
-
- /* An oriented triangle: includes a pointer to a triangle and orientation. */
- /* The orientation denotes an edge of the triangle. Hence, there are */
- /* three possible orientations. By convention, each edge is always */
- /* directed to point counterclockwise about the corresponding triangle. */
-
- struct triedge {
- triangle *tri;
- int orient; /* Ranges from 0 to 2. */
- };
-
- /* The shell data structure. Each shell edge contains two pointers to */
- /* adjoining shell edges, plus two pointers to vertex points, plus two */
- /* pointers to adjoining triangles, plus one shell marker. */
-
- typedef double **shelle; /* Really: typedef shelle *shelle */
-
- /* An oriented shell edge: includes a pointer to a shell edge and an */
- /* orientation. The orientation denotes a side of the edge. Hence, there */
- /* are two possible orientations. By convention, the edge is always */
- /* directed so that the "side" denoted is the right side of the edge. */
-
- struct edge {
- shelle *sh;
- int shorient; /* Ranges from 0 to 1. */
- };
-
- /* The point data structure. Each point is actually an array of REALs. */
- /* The number of REALs is unknown until runtime. An integer boundary */
- /* marker, and sometimes a pointer to a triangle, is appended after the */
- /* REALs. */
-
- typedef double *point;
-
- /* A type used to allocate memory. firstblock is the first block of items. */
- /* nowblock is the block from which items are currently being allocated. */
- /* nextitem points to the next slab of free memory for an item. */
- /* deaditemstack is the head of a linked list (stack) of deallocated items */
- /* that can be recycled. unallocateditems is the number of items that */
- /* remain to be allocated from nowblock. */
- /* */
- /* Traversal is the process of walking through the entire list of items, and */
- /* is separate from allocation. Note that a traversal will visit items on */
- /* the "deaditemstack" stack as well as live items. pathblock points to */
- /* the block currently being traversed. pathitem points to the next item */
- /* to be traversed. pathitemsleft is the number of items that remain to */
- /* be traversed in pathblock. */
- /* */
- /* itemwordtype is set to POINTER or FLOATINGPOINT, and is used to suggest */
- /* what sort of word the record is primarily made up of. alignbytes */
- /* determines how new records should be aligned in memory. itembytes and */
- /* itemwords are the length of a record in bytes (after rounding up) and */
- /* words. itemsperblock is the number of items allocated at once in a */
- /* single block. items is the number of currently allocated items. */
- /* maxitems is the maximum number of items that have been allocated at */
- /* once; it is the current number of items plus the number of records kept */
- /* on deaditemstack. */
-
- struct memorypool {
- void **firstblock, **nowblock;
- void *nextitem;
- void *deaditemstack;
- void **pathblock;
- void *pathitem;
- enum wordtype itemwordtype;
- int alignbytes;
- int itembytes, itemwords;
- int itemsperblock;
- long items, maxitems;
- int unallocateditems;
- int pathitemsleft;
- };
-
- /* Variables used to allocate memory for triangles, shell edges, points, */
- /* viri (triangles being eaten), bad (encroached) segments, bad (skinny */
- /* or too large) triangles, and splay tree nodes. */
-
- struct memorypool triangles;
- struct memorypool shelles;
- struct memorypool points;
- struct memorypool viri;
- struct memorypool badsegments;
- struct memorypool badtriangles;
- struct memorypool splaynodes;
-
- /* Variables that maintain the bad triangle queues. The tails are pointers */
- /* to the pointers that have to be filled in to enqueue an item. */
-
- double xmin, xmax, ymin, ymax; /* x and y bounds. */
- double xminextreme; /* Nonexistent x value used as a flag in sweepline. */
- int inpoints; /* Number of input points. */
- int insegments; /* Number of input segments. */
- int holes; /* Number of input holes. */
- int regions; /* Number of input regions. */
- long edges; /* Number of output edges. */
- int mesh_dim; /* Dimension (ought to be 2). */
- int nextras; /* Number of attributes per point. */
- int eextras; /* Number of attributes per triangle. */
- long hullsize; /* Number of edges of convex hull. */
- int triwords; /* Total words per triangle. */
- int shwords; /* Total words per shell edge. */
- int pointmarkindex; /* Index to find boundary marker of a point. */
- int point2triindex; /* Index to find a triangle adjacent to a point. */
- int highorderindex; /* Index to find extra nodes for high-order elements. */
- int elemattribindex; /* Index to find attributes of a triangle. */
- int areaboundindex; /* Index to find area bound of a triangle. */
- int checksegments; /* Are there segments in the triangulation yet? */
- long samples; /* Number of random samples for point location. */
- unsigned long randomseed; /* Current random number seed. */
-
- double splitter; /* Used to split double factors for exact multiplication. */
- double epsilon; /* Floating-point machine epsilon. */
- double resulterrbound;
- double ccwerrboundA, ccwerrboundB, ccwerrboundC;
- double iccerrboundA, iccerrboundB, iccerrboundC;
-
- long incirclecount; /* Number of incircle tests performed. */
- long counterclockcount; /* Number of counterclockwise tests performed. */
- long hyperbolacount; /* Number of right-of-hyperbola tests performed. */
- long circumcentercount; /* Number of circumcenter calculations performed. */
- long circletopcount; /* Number of circle top calculations performed. */
-
- /* Switches for the triangulator. */
- /* useshelles: -p, -r, -q, or -c switch; determines whether shell edges */
- /* are used at all. */
- int useshelles;
- int order;
- double minangle, goodangle;
- double maxarea;
-
- /* Triangular bounding box points. */
-
- point infpoint1, infpoint2, infpoint3;
-
- /* Pointer to the `triangle' that occupies all of "outer space". */
-
- triangle *dummytri;
- triangle *dummytribase; /* Keep base address so we can free() it later. */
-
- /* Pointer to the omnipresent shell edge. Referenced by any triangle or */
- /* shell edge that isn't really connected to a shell edge at that */
- /* location. */
-
- shelle *dummysh;
- shelle *dummyshbase; /* Keep base address so we can free() it later. */
-
- /* Pointer to a recently visited triangle. Improves point location if */
- /* proximate points are inserted sequentially. */
-
- struct triedge recenttri;
-
- /*****************************************************************************/
- /* */
- /* Mesh manipulation primitives. Each triangle contains three pointers to */
- /* other triangles, with orientations. Each pointer points not to the */
- /* first byte of a triangle, but to one of the first three bytes of a */
- /* triangle. It is necessary to extract both the triangle itself and the */
- /* orientation. To save memory, I keep both pieces of information in one */
- /* pointer. To make this possible, I assume that all triangles are aligned */
- /* to four-byte boundaries. The `decode' routine below decodes a pointer, */
- /* extracting an orientation (in the range 0 to 2) and a pointer to the */
- /* beginning of a triangle. The `encode' routine compresses a pointer to a */
- /* triangle and an orientation into a single pointer. My assumptions that */
- /* triangles are four-byte-aligned and that the `unsigned long' type is */
- /* long enough to hold a pointer are two of the few kludges in this program.*/
- /* */
- /* Shell edges are manipulated similarly. A pointer to a shell edge */
- /* carries both an address and an orientation in the range 0 to 1. */
- /* */
- /* The other primitives take an oriented triangle or oriented shell edge, */
- /* and return an oriented triangle or oriented shell edge or point; or they */
- /* change the connections in the data structure. */
- /* */
- /*****************************************************************************/
-
- /********* Mesh manipulation primitives begin here *********/
- /** **/
- /** **/
-
- /* Fast lookup arrays to speed some of the mesh manipulation primitives. */
-
- int plus1mod3[3] = {1, 2, 0};
- int minus1mod3[3] = {2, 0, 1};
-
- /********* Primitives for triangles *********/
- /* */
- /* */
-
- /* decode() converts a pointer to an oriented triangle. The orientation is */
- /* extracted from the two least significant bits of the pointer. */
-
- #define decode(ptr, triedge) \
- (triedge).orient = (int) ((unsigned long) (ptr) & (unsigned long) 3l); \
- (triedge).tri = (triangle *) \
- ((unsigned long) (ptr) ^ (unsigned long) (triedge).orient)
-
- /* encode() compresses an oriented triangle into a single pointer. It */
- /* relies on the assumption that all triangles are aligned to four-byte */
- /* boundaries, so the two least significant bits of (triedge).tri are zero.*/
-
- #define encode(triedge) \
- (triangle) ((unsigned long) (triedge).tri | (unsigned long) (triedge).orient)
-
- /* The following edge manipulation primitives are all described by Guibas */
- /* and Stolfi. However, they use an edge-based data structure, whereas I */
- /* am using a triangle-based data structure. */
-
- /* sym() finds the abutting triangle, on the same edge. Note that the */
- /* edge direction is necessarily reversed, because triangle/edge handles */
- /* are always directed counterclockwise around the triangle. */
-
- #define sym(triedge1, triedge2) \
- ptr = (triedge1).tri[(triedge1).orient]; \
- decode(ptr, triedge2);
-
- #define symself(triedge) \
- ptr = (triedge).tri[(triedge).orient]; \
- decode(ptr, triedge);
-
- /* lnext() finds the next edge (counterclockwise) of a triangle. */
-
- #define lnext(triedge1, triedge2) \
- (triedge2).tri = (triedge1).tri; \
- (triedge2).orient = plus1mod3[(triedge1).orient]
-
- #define lnextself(triedge) \
- (triedge).orient = plus1mod3[(triedge).orient]
-
- /* lprev() finds the previous edge (clockwise) of a triangle. */
-
- #define lprev(triedge1, triedge2) \
- (triedge2).tri = (triedge1).tri; \
- (triedge2).orient = minus1mod3[(triedge1).orient]
-
- #define lprevself(triedge) \
- (triedge).orient = minus1mod3[(triedge).orient]
-
- /* onext() spins counterclockwise around a point; that is, it finds the next */
- /* edge with the same origin in the counterclockwise direction. This edge */
- /* will be part of a different triangle. */
-
- #define onext(triedge1, triedge2) \
- lprev(triedge1, triedge2); \
- symself(triedge2);
-
- #define onextself(triedge) \
- lprevself(triedge); \
- symself(triedge);
-
- /* oprev() spins clockwise around a point; that is, it finds the next edge */
- /* with the same origin in the clockwise direction. This edge will be */
- /* part of a different triangle. */
-
- #define oprev(triedge1, triedge2) \
- sym(triedge1, triedge2); \
- lnextself(triedge2);
-
- #define oprevself(triedge) \
- symself(triedge); \
- lnextself(triedge);
-
- /* These primitives determine or set the origin, destination, or apex of a */
- /* triangle. */
-
- #define org(triedge, pointptr) \
- pointptr = (point) (triedge).tri[plus1mod3[(triedge).orient] + 3]
-
- #define dest(triedge, pointptr) \
- pointptr = (point) (triedge).tri[minus1mod3[(triedge).orient] + 3]
-
- #define apex(triedge, pointptr) \
- pointptr = (point) (triedge).tri[(triedge).orient + 3]
-
- #define setorg(triedge, pointptr) \
- (triedge).tri[plus1mod3[(triedge).orient] + 3] = (triangle) pointptr
-
- #define setdest(triedge, pointptr) \
- (triedge).tri[minus1mod3[(triedge).orient] + 3] = (triangle) pointptr
-
- #define setapex(triedge, pointptr) \
- (triedge).tri[(triedge).orient + 3] = (triangle) pointptr
-
- /* Bond two triangles together. */
-
- #define bond(triedge1, triedge2) \
- (triedge1).tri[(triedge1).orient] = encode(triedge2); \
- (triedge2).tri[(triedge2).orient] = encode(triedge1)
-
- /* Dissolve a bond (from one side). Note that the other triangle will still */
- /* think it's connected to this triangle. Usually, however, the other */
- /* triangle is being deleted entirely, or bonded to another triangle, so */
- /* it doesn't matter. */
-
- #define dissolve(triedge) \
- (triedge).tri[(triedge).orient] = (triangle) dummytri
-
- /* Copy a triangle/edge handle. */
-
- #define triedgecopy(triedge1, triedge2) \
- (triedge2).tri = (triedge1).tri; \
- (triedge2).orient = (triedge1).orient
-
- /* Test for equality of triangle/edge handles. */
-
- #define triedgeequal(triedge1, triedge2) \
- (((triedge1).tri == (triedge2).tri) && \
- ((triedge1).orient == (triedge2).orient))
-
- /* Primitives to infect or cure a triangle with the virus. These rely on */
- /* the assumption that all shell edges are aligned to four-byte boundaries.*/
-
- #define infect(triedge) \
- (triedge).tri[6] = (triangle) \
- ((unsigned long) (triedge).tri[6] | (unsigned long) 2l)
-
- #define uninfect(triedge) \
- (triedge).tri[6] = (triangle) \
- ((unsigned long) (triedge).tri[6] & ~ (unsigned long) 2l)
-
- /* Test a triangle for viral infection. */
-
- #define infected(triedge) \
- (((unsigned long) (triedge).tri[6] & (unsigned long) 2l) != 0)
-
- /* Check or set a triangle's attributes. */
-
- #define elemattribute(triedge, attnum) \
- ((double *) (triedge).tri)[elemattribindex + (attnum)]
-
- #define setelemattribute(triedge, attnum, value) \
- ((double *) (triedge).tri)[elemattribindex + (attnum)] = value
-
- /********* Primitives for shell edges *********/
- /* */
- /* */
-
- /* sdecode() converts a pointer to an oriented shell edge. The orientation */
- /* is extracted from the least significant bit of the pointer. The two */
- /* least significant bits (one for orientation, one for viral infection) */
- /* are masked out to produce the real pointer. */
-
- #define sdecode(sptr, edge) \
- (edge).shorient = (int) ((unsigned long) (sptr) & (unsigned long) 1l); \
- (edge).sh = (shelle *) \
- ((unsigned long) (sptr) & ~ (unsigned long) 3l)
-
- /* sencode() compresses an oriented shell edge into a single pointer. It */
- /* relies on the assumption that all shell edges are aligned to two-byte */
- /* boundaries, so the least significant bit of (edge).sh is zero. */
-
- #define sencode(edge) \
- (shelle) ((unsigned long) (edge).sh | (unsigned long) (edge).shorient)
-
- /* ssym() toggles the orientation of a shell edge. */
- #define ssymself(edge) \
- (edge).shorient = 1 - (edge).shorient
-
- /* spivot() finds the other shell edge (from the same segment) that shares */
- /* the same origin. */
-
- #define spivot(edge1, edge2) \
- sptr = (edge1).sh[(edge1).shorient]; \
- sdecode(sptr, edge2)
-
- /* These primitives determine or set the origin or destination of a shell */
- /* edge. */
-
- #define setsorg(edge, pointptr) \
- (edge).sh[2 + (edge).shorient] = (shelle) pointptr
-
- #define setsdest(edge, pointptr) \
- (edge).sh[3 - (edge).shorient] = (shelle) pointptr
-
- /* These primitives read or set a shell marker. Shell markers are used to */
- /* hold user boundary information. */
-
- #define mark(edge) (* (int *) ((edge).sh + 6))
-
- #define setmark(edge, value) \
- * (int *) ((edge).sh + 6) = value
-
- /* Bond two shell edges together. */
-
- #define sbond(edge1, edge2) \
- (edge1).sh[(edge1).shorient] = sencode(edge2); \
- (edge2).sh[(edge2).shorient] = sencode(edge1)
-
- /* Copy a shell edge. */
-
- #define shellecopy(edge1, edge2) \
- (edge2).sh = (edge1).sh; \
- (edge2).shorient = (edge1).shorient
-
- /********* Primitives for interacting triangles and shell edges *********/
- /* */
- /* */
-
- /* tspivot() finds a shell edge abutting a triangle. */
-
- #define tspivot(triedge, edge) \
- sptr = (shelle) (triedge).tri[6 + (triedge).orient]; \
- sdecode(sptr, edge)
-
- /* Bond a triangle to a shell edge. */
-
- #define tsbond(triedge, edge) \
- (triedge).tri[6 + (triedge).orient] = (triangle) sencode(edge); \
- (edge).sh[4 + (edge).shorient] = (shelle) encode(triedge)
-
- /* Dissolve a bond (from the triangle side). */
-
- #define tsdissolve(triedge) \
- (triedge).tri[6 + (triedge).orient] = (triangle) dummysh
-
- /* Dissolve a bond (from the shell edge side). */
-
- #define stdissolve(edge) \
- (edge).sh[4 + (edge).shorient] = (shelle) dummytri
-
- /********* Primitives for points *********/
- /* */
- /* */
-
- #define pointmark(pt) ((int *) (pt))[pointmarkindex]
-
- #define setpointmark(pt, value) \
- ((int *) (pt))[pointmarkindex] = value
-
- #define point2tri(pt) ((triangle *) (pt))[point2triindex]
-
- #define setpoint2tri(pt, value) \
- ((triangle *) (pt))[point2triindex] = value
-
- /** **/
- /** **/
- /********* Mesh manipulation primitives end here *********/
-
- /********* User interaction routines begin here *********/
- /** **/
- /** **/
-
- /*****************************************************************************/
- /* */
- /* internalerror() Ask the user to send me the defective product. Exit. */
- /* */
- /*****************************************************************************/
-
- void internalerror(void)
- {
- vTrace("*** E0031 : Erreur interne. Communiquez le contexte à stephane.guillard@steria.fr");
- exit(1);
- }
-
- /*****************************************************************************/
- /* */
- /* parsecommandline() Read the command line, identify switches, and set */
- /* up options and file names. */
- /* */
- /* The effects of this routine are felt entirely through global variables. */
- /* */
- /*****************************************************************************/
-
- void parsecommandline(int argc, char **argv)
- {
- order = 1;
- minangle = 0.0;
- maxarea = -1.0;
-
- useshelles = 1;
- goodangle = cos(minangle * PI / 180.0);
- goodangle *= goodangle;
- }
-
- /** **/
- /** **/
- /********* User interaction routines begin here *********/
-
- /********* Memory management routines begin here *********/
- /** **/
- /** **/
-
- /*****************************************************************************/
- /* */
- /* poolinit() Initialize a pool of memory for allocation of items. */
- /* */
- /* This routine initializes the machinery for allocating items. A `pool' */
- /* is created whose records have size at least `bytecount'. Items will be */
- /* allocated in `itemcount'-item blocks. Each item is assumed to be a */
- /* collection of words, and either pointers or floating-point values are */
- /* assumed to be the "primary" word type. (The "primary" word type is used */
- /* to determine alignment of items.) If `alignment' isn't zero, all items */
- /* will be `alignment'-byte aligned in memory. `alignment' must be either */
- /* a multiple or a factor of the primary word size; powers of two are safe. */
- /* `alignment' is normally used to create a few unused bits at the bottom */
- /* of each item's pointer, in which information may be stored. */
- /* */
- /* Don't change this routine unless you understand it. */
- /* */
- /*****************************************************************************/
-
- void poolinit(struct memorypool *pool,int bytecount, int itemcount, enum wordtype wtype, int alignment)
- {
- int wordsize;
-
- /* Initialize values in the pool. */
- pool->itemwordtype = wtype;
- wordsize = (pool->itemwordtype == POINTER) ? sizeof(void *) : sizeof(double);
- /* Find the proper alignment, which must be at least as large as: */
- /* - The parameter `alignment'. */
- /* - The primary word type, to avoid unaligned accesses. */
- /* - sizeof(void *), so the stack of dead items can be maintained */
- /* without unaligned accesses. */
- if (alignment > wordsize) {
- pool->alignbytes = alignment;
- } else {
- pool->alignbytes = wordsize;
- }
- if (sizeof(void *) > pool->alignbytes) {
- pool->alignbytes = sizeof(void *);
- }
- pool->itemwords = ((bytecount + pool->alignbytes - 1) / pool->alignbytes)
- * (pool->alignbytes / wordsize);
- pool->itembytes = pool->itemwords * wordsize;
- pool->itemsperblock = itemcount;
-
- /* Allocate a block of items. Space for `itemsperblock' items and one */
- /* pointer (to point to the next block) are allocated, as well as space */
- /* to ensure alignment of the items. */
- pool->firstblock = (void **) malloc(pool->itemsperblock * pool->itembytes
- + sizeof(void *) + pool->alignbytes);
- if (pool->firstblock == (void **) NULL) {
- vTrace("Error: Out of memory.");
- exit(1);
- }
- /* Set the next block pointer to NULL. */
- *(pool->firstblock) = (void *) NULL;
- poolrestart(pool);
- }
-
- /*****************************************************************************/
- /* */
- /* poolrestart() Deallocate all items in a pool. */
- /* */
- /* The pool is returned to its starting state, except that no memory is */
- /* freed to the operating system. Rather, the previously allocated blocks */
- /* are ready to be reused. */
- /* */
- /*****************************************************************************/
-
- void poolrestart(struct memorypool *pool)
- {
- unsigned long alignptr;
-
- pool->items = 0;
- pool->maxitems = 0;
-
- /* Set the currently active block. */
- pool->nowblock = pool->firstblock;
- /* Find the first item in the pool. Increment by the size of (void *). */
- alignptr = (unsigned long) (pool->nowblock + 1);
- /* Align the item on an `alignbytes'-byte boundary. */
- pool->nextitem = (void *)
- (alignptr + (unsigned long) pool->alignbytes
- - (alignptr % (unsigned long) pool->alignbytes));
- /* There are lots of unallocated items left in this block. */
- pool->unallocateditems = pool->itemsperblock;
- /* The stack of deallocated items is empty. */
- pool->deaditemstack = (void *) NULL;
- }
-
- /*****************************************************************************/
- /* */
- /* pooldeinit() Free to the operating system all memory taken by a pool. */
- /* */
- /*****************************************************************************/
-
- void pooldeinit(struct memorypool *pool)
- {
- while (pool->firstblock != (void **) NULL) {
- pool->nowblock = (void **) *(pool->firstblock);
- free(pool->firstblock);
- pool->firstblock = pool->nowblock;
- }
- }
-
- /*****************************************************************************/
- /* */
- /* poolalloc() Allocate space for an item. */
- /* */
- /*****************************************************************************/
-
- void *poolalloc(struct memorypool *pool)
- {
- void *newitem;
- void **newblock;
- unsigned long alignptr;
-
- /* First check the linked list of dead items. If the list is not */
- /* empty, allocate an item from the list rather than a fresh one. */
- if (pool->deaditemstack != (void *) NULL) {
- newitem = pool->deaditemstack; /* Take first item in list. */
- pool->deaditemstack = * (void **) pool->deaditemstack;
- } else {
- /* Check if there are any free items left in the current block. */
- if (pool->unallocateditems == 0) {
- /* Check if another block must be allocated. */
- if (*(pool->nowblock) == (void *) NULL) {
- /* Allocate a new block of items, pointed to by the previous block. */
- newblock = (void **) malloc(pool->itemsperblock * pool->itembytes
- + sizeof(void *) + pool->alignbytes);
- if (newblock == (void **) NULL) {
- vTrace("Error: Out of memory.");
- exit(1);
- }
- *(pool->nowblock) = (void *) newblock;
- /* The next block pointer is NULL. */
- *newblock = (void *) NULL;
- }
- /* Move to the new block. */
- pool->nowblock = (void **) *(pool->nowblock);
- /* Find the first item in the block. */
- /* Increment by the size of (void *). */
- alignptr = (unsigned long) (pool->nowblock + 1);
- /* Align the item on an `alignbytes'-byte boundary. */
- pool->nextitem = (void *)
- (alignptr + (unsigned long) pool->alignbytes
- - (alignptr % (unsigned long) pool->alignbytes));
- /* There are lots of unallocated items left in this block. */
- pool->unallocateditems = pool->itemsperblock;
- }
- /* Allocate a new item. */
- newitem = pool->nextitem;
- /* Advance `nextitem' pointer to next free item in block. */
- if (pool->itemwordtype == POINTER) {
- pool->nextitem = (void *) ((void **) pool->nextitem + pool->itemwords);
- } else {
- pool->nextitem = (void *) ((double *) pool->nextitem + pool->itemwords);
- }
- pool->unallocateditems--;
- pool->maxitems++;
- }
- pool->items++;
- return newitem;
- }
-
- /*****************************************************************************/
- /* */
- /* pooldealloc() Deallocate space for an item. */
- /* */
- /* The deallocated space is stored in a queue for later reuse. */
- /* */
- /*****************************************************************************/
-
- void pooldealloc(struct memorypool *pool, void* dyingitem)
- {
- /* Push freshly killed item onto stack. */
- *((void **) dyingitem) = pool->deaditemstack;
- pool->deaditemstack = dyingitem;
- pool->items--;
- }
-
- /*****************************************************************************/
- /* */
- /* traversalinit() Prepare to traverse the entire list of items. */
- /* */
- /* This routine is used in conjunction with traverse(). */
- /* */
- /*****************************************************************************/
-
- void traversalinit(struct memorypool *pool)
- {
- unsigned long alignptr;
-
- /* Begin the traversal in the first block. */
- pool->pathblock = pool->firstblock;
- /* Find the first item in the block. Increment by the size of (void *). */
- alignptr = (unsigned long) (pool->pathblock + 1);
- /* Align with item on an `alignbytes'-byte boundary. */
- pool->pathitem = (void *)
- (alignptr + (unsigned long) pool->alignbytes
- - (alignptr % (unsigned long) pool->alignbytes));
- /* Set the number of items left in the current block. */
- pool->pathitemsleft = pool->itemsperblock;
- }
-
- /*****************************************************************************/
- /* */
- /* traverse() Find the next item in the list. */
- /* */
- /* This routine is used in conjunction with traversalinit(). Be forewarned */
- /* that this routine successively returns all items in the list, including */
- /* deallocated ones on the deaditemqueue. It's up to you to figure out */
- /* which ones are actually dead. Why? I don't want to allocate extra */
- /* space just to demarcate dead items. It can usually be done more */
- /* space-efficiently by a routine that knows something about the structure */
- /* of the item. */
- /* */
- /*****************************************************************************/
-
- void *traverse(struct memorypool *pool)
- {
- void *newitem;
- unsigned long alignptr;
-
- /* Stop upon exhausting the list of items. */
- if (pool->pathitem == pool->nextitem) {
- return (void *) NULL;
- }
- /* Check whether any untraversed items remain in the current block. */
- if (pool->pathitemsleft == 0) {
- /* Find the next block. */
- pool->pathblock = (void **) *(pool->pathblock);
- /* Find the first item in the block. Increment by the size of (void *). */
- alignptr = (unsigned long) (pool->pathblock + 1);
- /* Align with item on an `alignbytes'-byte boundary. */
- pool->pathitem = (void *)
- (alignptr + (unsigned long) pool->alignbytes
- - (alignptr % (unsigned long) pool->alignbytes));
- /* Set the number of items left in the current block. */
- pool->pathitemsleft = pool->itemsperblock;
- }
- newitem = pool->pathitem;
- /* Find the next item in the block. */
- if (pool->itemwordtype == POINTER) {
- pool->pathitem = (void *) ((void **) pool->pathitem + pool->itemwords);
- } else {
- pool->pathitem = (void *) ((double *) pool->pathitem + pool->itemwords);
- }
- pool->pathitemsleft--;
- return newitem;
- }
-
- /*****************************************************************************/
- /* */
- /* dummyinit() Initialize the triangle that fills "outer space" and the */
- /* omnipresent shell edge. */
- /* */
- /* The triangle that fills "outer space", called `dummytri', is pointed to */
- /* by every triangle and shell edge on a boundary (be it outer or inner) of */
- /* the triangulation. Also, `dummytri' points to one of the triangles on */
- /* the convex hull (until the holes and concavities are carved), making it */
- /* possible to find a starting triangle for point location. */
- /* */
- /* The omnipresent shell edge, `dummysh', is pointed to by every triangle */
- /* or shell edge that doesn't have a full complement of real shell edges */
- /* to point to. */
- /* */
- /*****************************************************************************/
-
- void dummyinit(int trianglewords, int shellewords)
- {
- unsigned long alignptr;
-
- /* `triwords' and `shwords' are used by the mesh manipulation primitives */
- /* to extract orientations of triangles and shell edges from pointers. */
- triwords = trianglewords; /* Initialize `triwords' once and for all. */
- shwords = shellewords; /* Initialize `shwords' once and for all. */
-
- /* Set up `dummytri', the `triangle' that occupies "outer space". */
- dummytribase = (triangle *) malloc(triwords * sizeof(triangle)
- + triangles.alignbytes);
- if (dummytribase == (triangle *) NULL) {
- vTrace("Error: Out of memory.");
- exit(1);
- }
- /* Align `dummytri' on a `triangles.alignbytes'-byte boundary. */
- alignptr = (unsigned long) dummytribase;
- dummytri = (triangle *)
- (alignptr + (unsigned long) triangles.alignbytes
- - (alignptr % (unsigned long) triangles.alignbytes));
- /* Initialize the three adjoining triangles to be "outer space". These */
- /* will eventually be changed by various bonding operations, but their */
- /* values don't really matter, as long as they can legally be */
- /* dereferenced. */
- dummytri[0] = (triangle) dummytri;
- dummytri[1] = (triangle) dummytri;
- dummytri[2] = (triangle) dummytri;
- /* Three NULL vertex points. */
- dummytri[3] = (triangle) NULL;
- dummytri[4] = (triangle) NULL;
- dummytri[5] = (triangle) NULL;
-
- if (useshelles) {
- /* Set up `dummysh', the omnipresent "shell edge" pointed to by any */
- /* triangle side or shell edge end that isn't attached to a real shell */
- /* edge. */
- dummyshbase = (shelle *) malloc(shwords * sizeof(shelle)
- + shelles.alignbytes);
- if (dummyshbase == (shelle *) NULL) {
- vTrace("Error: Out of memory.");
- exit(1);
- }
- /* Align `dummysh' on a `shelles.alignbytes'-byte boundary. */
- alignptr = (unsigned long) dummyshbase;
- dummysh = (shelle *)
- (alignptr + (unsigned long) shelles.alignbytes
- - (alignptr % (unsigned long) shelles.alignbytes));
- /* Initialize the two adjoining shell edges to be the omnipresent shell */
- /* edge. These will eventually be changed by various bonding */
- /* operations, but their values don't really matter, as long as they */
- /* can legally be dereferenced. */
- dummysh[0] = (shelle) dummysh;
- dummysh[1] = (shelle) dummysh;
- /* Two NULL vertex points. */
- dummysh[2] = (shelle) NULL;
- dummysh[3] = (shelle) NULL;
- /* Initialize the two adjoining triangles to be "outer space". */
- dummysh[4] = (shelle) dummytri;
- dummysh[5] = (shelle) dummytri;
- /* Set the boundary marker to zero. */
- * (int *) (dummysh + 6) = 0;
-
- /* Initialize the three adjoining shell edges of `dummytri' to be */
- /* the omnipresent shell edge. */
- dummytri[6] = (triangle) dummysh;
- dummytri[7] = (triangle) dummysh;
- dummytri[8] = (triangle) dummysh;
- }
- }
-
- /*****************************************************************************/
- /* */
- /* initializepointpool() Calculate the size of the point data structure */
- /* and initialize its memory pool. */
- /* */
- /* This routine also computes the `pointmarkindex' and `point2triindex' */
- /* indices used to find values within each point. */
- /* */
- /*****************************************************************************/
-
- void initializepointpool(void)
- {
- int pointsize;
-
- /* The index within each point at which the boundary marker is found. */
- /* Ensure the point marker is aligned to a sizeof(int)-byte address. */
- pointmarkindex = ((mesh_dim + nextras) * sizeof(double) + sizeof(int) - 1)
- / sizeof(int);
- pointsize = (pointmarkindex + 1) * sizeof(int);
- /* The index within each point at which a triangle pointer is found. */
- /* Ensure the pointer is aligned to a sizeof(triangle)-byte address. */
- point2triindex = (pointsize + sizeof(triangle) - 1) / sizeof(triangle);
- pointsize = (point2triindex + 1) * sizeof(triangle);
-
- /* Initialize the pool of points. */
- poolinit(&points, pointsize, POINTPERBLOCK,
- (sizeof(double) >= sizeof(triangle)) ? FLOATINGPOINT : POINTER, 0);
- }
-
- /*****************************************************************************/
- /* */
- /* initializetrisegpools() Calculate the sizes of the triangle and shell */
- /* edge data structures and initialize their */
- /* memory pools. */
- /* */
- /* This routine also computes the `highorderindex', `elemattribindex', and */
- /* `areaboundindex' indices used to find values within each triangle. */
- /* */
- /*****************************************************************************/
-
- void initializetrisegpools(void)
- {
- int trisize;
-
- /* The index within each triangle at which the extra nodes (above three) */
- /* associated with high order elements are found. There are three */
- /* pointers to other triangles, three pointers to corners, and possibly */
- /* three pointers to shell edges before the extra nodes. */
- highorderindex = 6 + (useshelles * 3);
- /* The number of bytes occupied by a triangle. */
- trisize = ((order + 1) * (order + 2) / 2 + (highorderindex - 3)) *
- sizeof(triangle);
- /* The index within each triangle at which its attributes are found, */
- /* where the index is measured in REALs. */
- elemattribindex = (trisize + sizeof(double) - 1) / sizeof(double);
- /* The index within each triangle at which the maximum area constraint */
- /* is found, where the index is measured in REALs.*/
- areaboundindex = elemattribindex + eextras;
- /* If triangle attributes or an area bound are needed, increase the number */
- /* of bytes occupied by a triangle. */
- if (eextras > 0) {
- trisize = areaboundindex * sizeof(double);
- }
-
- /* Having determined the memory size of a triangle, initialize the pool. */
- poolinit(&triangles, trisize, TRIPERBLOCK, POINTER, 4);
-
- if (useshelles) {
- /* Initialize the pool of shell edges. */
- poolinit(&shelles, 6 * sizeof(triangle) + sizeof(int), SHELLEPERBLOCK,
- POINTER, 4);
-
- /* Initialize the "outer space" triangle and omnipresent shell edge. */
- dummyinit(triangles.itemwords, shelles.itemwords);
- } else {
- /* Initialize the "outer space" triangle. */
- dummyinit(triangles.itemwords, 0);
- }
- }
-
- /*****************************************************************************/
- /* */
- /* triangledealloc() Deallocate space for a triangle, marking it dead. */
- /* */
- /*****************************************************************************/
-
- void triangledealloc(triangle *dyingtriangle)
- {
- /* Set triangle's vertices to NULL. This makes it possible to */
- /* detect dead triangles when traversing the list of all triangles. */
- dyingtriangle[3] = (triangle) NULL;
- dyingtriangle[4] = (triangle) NULL;
- dyingtriangle[5] = (triangle) NULL;
- pooldealloc(&triangles, (void *) dyingtriangle);
- }
-
- /*****************************************************************************/
- /* */
- /* triangletraverse() Traverse the triangles, skipping dead ones. */
- /* */
- /*****************************************************************************/
-
- triangle *triangletraverse(void)
- {
- triangle *newtriangle;
-
- do {
- newtriangle = (triangle *) traverse(&triangles);
- if (newtriangle == (triangle *) NULL) {
- return (triangle *) NULL;
- }
- } while (newtriangle[3] == (triangle) NULL); /* Skip dead ones. */
- return newtriangle;
- }
-
- /*****************************************************************************/
- /* */
- /* shelledealloc() Deallocate space for a shell edge, marking it dead. */
- /* */
- /*****************************************************************************/
-
- void shelledealloc(shelle *dyingshelle)
- {
- /* Set shell edge's vertices to NULL. This makes it possible to */
- /* detect dead shells when traversing the list of all shells. */
- dyingshelle[2] = (shelle) NULL;
- dyingshelle[3] = (shelle) NULL;
- pooldealloc(&shelles, (void *) dyingshelle);
- }
-
- /*****************************************************************************/
- /* */
- /* pointdealloc() Deallocate space for a point, marking it dead. */
- /* */
- /*****************************************************************************/
-
- void pointdealloc(point dyingpoint)
- {
- /* Mark the point as dead. This makes it possible to detect dead points */
- /* when traversing the list of all points. */
- setpointmark(dyingpoint, DEADPOINT);
- pooldealloc(&points, (void *) dyingpoint);
- }
-
- /*****************************************************************************/
- /* */
- /* pointtraverse() Traverse the points, skipping dead ones. */
- /* */
- /*****************************************************************************/
-
- point pointtraverse(void)
- {
- point newpoint;
-
- do {
- newpoint = (point) traverse(&points);
- if (newpoint == (point) NULL) {
- return (point) NULL;
- }
- } while (pointmark(newpoint) == DEADPOINT); /* Skip dead ones. */
- return newpoint;
- }
-
- /*****************************************************************************/
- /* */
- /* getpoint() Get a specific point, by number, from the list. */
- /* */
- /* The first point is number 0. */
- /* */
- /* Note that this takes O(n) time (with a small constant, if POINTPERBLOCK */
- /* is large). I don't care to take the trouble to make it work in constant */
- /* time. */
- /* */
- /*****************************************************************************/
-
- point getpoint(int number)
- {
- void **getblock;
- point foundpoint;
- unsigned long alignptr;
- int current;
-
- getblock = points.firstblock;
- current = 0;
- /* Find the right block. */
- while (current + points.itemsperblock <= number) {
- getblock = (void **) *getblock;
- current += points.itemsperblock;
- }
- /* Now find the right point. */
- alignptr = (unsigned long) (getblock + 1);
- foundpoint = (point) (alignptr + (unsigned long) points.alignbytes
- - (alignptr % (unsigned long) points.alignbytes));
- while (current < number) {
- foundpoint += points.itemwords;
- current++;
- }
- return foundpoint;
- }
-
- /*****************************************************************************/
- /* */
- /* triangledeinit() Free all remaining allocated memory. */
- /* */
- /*****************************************************************************/
-
- void triangledeinit(void)
- {
- pooldeinit(&triangles);
- free(dummytribase);
- if (useshelles) {
- pooldeinit(&shelles);
- free(dummyshbase);
- }
- pooldeinit(&points);
- }
-
- /** **/
- /** **/
- /********* Memory management routines end here *********/
-
- /********* Constructors begin here *********/
- /** **/
- /** **/
-
- /*****************************************************************************/
- /* */
- /* maketriangle() Create a new triangle with orientation zero. */
- /* */
- /*****************************************************************************/
-
- void maketriangle(struct triedge *newtriedge)
- {
- int i;
-
- newtriedge->tri = (triangle *) poolalloc(&triangles);
- /* Initialize the three adjoining triangles to be "outer space". */
- newtriedge->tri[0] = (triangle) dummytri;
- newtriedge->tri[1] = (triangle) dummytri;
- newtriedge->tri[2] = (triangle) dummytri;
- /* Three NULL vertex points. */
- newtriedge->tri[3] = (triangle) NULL;
- newtriedge->tri[4] = (triangle) NULL;
- newtriedge->tri[5] = (triangle) NULL;
- /* Initialize the three adjoining shell edges to be the omnipresent */
- /* shell edge. */
- if (useshelles) {
- newtriedge->tri[6] = (triangle) dummysh;
- newtriedge->tri[7] = (triangle) dummysh;
- newtriedge->tri[8] = (triangle) dummysh;
- }
- for (i = 0; i < eextras; i++) {
- setelemattribute(*newtriedge, i, 0.0);
- }
-
- newtriedge->orient = 0;
- }
-
- /*****************************************************************************/
- /* */
- /* makeshelle() Create a new shell edge with orientation zero. */
- /* */
- /*****************************************************************************/
-
- void makeshelle(struct edge *newedge)
- {
- newedge->sh = (shelle *) poolalloc(&shelles);
- /* Initialize the two adjoining shell edges to be the omnipresent */
- /* shell edge. */
- newedge->sh[0] = (shelle) dummysh;
- newedge->sh[1] = (shelle) dummysh;
- /* Two NULL vertex points. */
- newedge->sh[2] = (shelle) NULL;
- newedge->sh[3] = (shelle) NULL;
- /* Initialize the two adjoining triangles to be "outer space". */
- newedge->sh[4] = (shelle) dummytri;
- newedge->sh[5] = (shelle) dummytri;
- /* Set the boundary marker to zero. */
- setmark(*newedge, 0);
-
- newedge->shorient = 0;
- }
-
- /** **/
- /** **/
- /********* Constructors end here *********/
-
- /********* Determinant evaluation routines begin here *********/
- /** **/
- /** **/
-
- /* The adaptive exact arithmetic geometric predicates implemented herein are */
- /* described in detail in my Technical Report CMU-CS-96-140. The complete */
- /* reference is given in the header. */
-
- /* Which of the following two methods of finding the absolute values is */
- /* fastest is compiler-dependent. A few compilers can inline and optimize */
- /* the fabs() call; but most will incur the overhead of a function call, */
- /* which is disastrously slow. A faster way on IEEE machines might be to */
- /* mask the appropriate bit, but that's difficult to do in C. */
-
- // #define Absolute(a) ((a) >= 0.0 ? (a) : -(a))
- #define Absolute(a) fabs(a)
-
- /* Many of the operations are broken up into two pieces, a main part that */
- /* performs an approximate operation, and a "tail" that computes the */
- /* roundoff error of that operation. */
- /* */
- /* The operations Fast_Two_Sum(), Fast_Two_Diff(), Two_Sum(), Two_Diff(), */
- /* Split(), and Two_Product() are all implemented as described in the */
- /* reference. Each of these macros requires certain variables to be */
- /* defined in the calling routine. The variables `bvirt', `c', `abig', */
- /* `_i', `_j', `_k', `_l', `_m', and `_n' are declared `INEXACT' because */
- /* they store the result of an operation that may incur roundoff error. */
- /* The input parameter `x' (or the highest numbered `x_' parameter) must */
- /* also be declared `INEXACT'. */
-
- #define Fast_Two_Sum_Tail(a, b, x, y) \
- bvirt = x - a; \
- y = b - bvirt
-
- #define Fast_Two_Sum(a, b, x, y) \
- x = (double) (a + b); \
- Fast_Two_Sum_Tail(a, b, x, y)
-
- #define Two_Sum_Tail(a, b, x, y) \
- bvirt = (double) (x - a); \
- avirt = x - bvirt; \
- bround = b - bvirt; \
- around = a - avirt; \
- y = around + bround
-
- #define Two_Sum(a, b, x, y) \
- x = (double) (a + b); \
- Two_Sum_Tail(a, b, x, y)
-
- #define Two_Diff_Tail(a, b, x, y) \
- bvirt = (double) (a - x); \
- avirt = x + bvirt; \
- bround = bvirt - b; \
- around = a - avirt; \
- y = around + bround
-
- #define Two_Diff(a, b, x, y) \
- x = (double) (a - b); \
- Two_Diff_Tail(a, b, x, y)
-
- #define Split(a, ahi, alo) \
- c = (double) (splitter * a); \
- abig = (double) (c - a); \
- ahi = c - abig; \
- alo = a - ahi
-
- #define Two_Product_Tail(a, b, x, y) \
- Split(a, ahi, alo); \
- Split(b, bhi, blo); \
- err1 = x - (ahi * bhi); \
- err2 = err1 - (alo * bhi); \
- err3 = err2 - (ahi * blo); \
- y = (alo * blo) - err3
-
- #define Two_Product(a, b, x, y) \
- x = (double) (a * b); \
- Two_Product_Tail(a, b, x, y)
-
- /* Two_Product_Presplit() is Two_Product() where one of the inputs has */
- /* already been split. Avoids redundant splitting. */
-
- #define Two_Product_Presplit(a, b, bhi, blo, x, y) \
- x = (double) (a * b); \
- Split(a, ahi, alo); \
- err1 = x - (ahi * bhi); \
- err2 = err1 - (alo * bhi); \
- err3 = err2 - (ahi * blo); \
- y = (alo * blo) - err3
-
- /* Square() can be done more quickly than Two_Product(). */
-
- #define Square_Tail(a, x, y) \
- Split(a, ahi, alo); \
- err1 = x - (ahi * ahi); \
- err3 = err1 - ((ahi + ahi) * alo); \
- y = (alo * alo) - err3
-
- #define Square(a, x, y) \
- x = (double) (a * a); \
- Square_Tail(a, x, y)
-
- /* Macros for summing expansions of various fixed lengths. These are all */
- /* unrolled versions of Expansion_Sum(). */
-
- #define Two_One_Sum(a1, a0, b, x2, x1, x0) \
- Two_Sum(a0, b , _i, x0); \
- Two_Sum(a1, _i, x2, x1)
-
- #define Two_One_Diff(a1, a0, b, x2, x1, x0) \
- Two_Diff(a0, b , _i, x0); \
- Two_Sum( a1, _i, x2, x1)
-
- #define Two_Two_Sum(a1, a0, b1, b0, x3, x2, x1, x0) \
- Two_One_Sum(a1, a0, b0, _j, _0, x0); \
- Two_One_Sum(_j, _0, b1, x3, x2, x1)
-
- #define Two_Two_Diff(a1, a0, b1, b0, x3, x2, x1, x0) \
- Two_One_Diff(a1, a0, b0, _j, _0, x0); \
- Two_One_Diff(_j, _0, b1, x3, x2, x1)
-
- /*****************************************************************************/
- /* */
- /* exactinit() Initialize the variables used for exact arithmetic. */
- /* */
- /* `epsilon' is the largest power of two such that 1.0 + epsilon = 1.0 in */
- /* floating-point arithmetic. `epsilon' bounds the relative roundoff */
- /* error. It is used for floating-point error analysis. */
- /* */
- /* `splitter' is used to split floating-point numbers into two half- */
- /* length significands for exact multiplication. */
- /* */
- /* I imagine that a highly optimizing compiler might be too smart for its */
- /* own good, and somehow cause this routine to fail, if it pretends that */
- /* floating-point arithmetic is too much like real arithmetic. */
- /* */
- /* Don't change this routine unless you fully understand it. */
- /* */
- /*****************************************************************************/
-
- void exactinit(void)
- {
- double half;
- double check, lastcheck;
- int every_other;
-
- every_other = 1;
- half = 0.5;
- epsilon = 1.0;
- splitter = 1.0;
- check = 1.0;
- /* Repeatedly divide `epsilon' by two until it is too small to add to */
- /* one without causing roundoff. (Also check if the sum is equal to */
- /* the previous sum, for machines that round up instead of using exact */
- /* rounding. Not that these routines will work on such machines anyway. */
- do {
- lastcheck = check;
- epsilon *= half;
- if (every_other) {
- splitter *= 2.0;
- }
- every_other = !every_other;
- check = 1.0 + epsilon;
- } while ((check != 1.0) && (check != lastcheck));
- splitter += 1.0;
-
- /* Error bounds for orientation and incircle tests. */
- resulterrbound = (3.0 + 8.0 * epsilon) * epsilon;
- ccwerrboundA = (3.0 + 16.0 * epsilon) * epsilon;
- ccwerrboundB = (2.0 + 12.0 * epsilon) * epsilon;
- ccwerrboundC = (9.0 + 64.0 * epsilon) * epsilon * epsilon;
- iccerrboundA = (10.0 + 96.0 * epsilon) * epsilon;
- iccerrboundB = (4.0 + 48.0 * epsilon) * epsilon;
- iccerrboundC = (44.0 + 576.0 * epsilon) * epsilon * epsilon;
- }
-
- /*****************************************************************************/
- /* */
- /* fast_expansion_sum_zeroelim() Sum two expansions, eliminating zero */
- /* components from the output expansion. */
- /* */
- /* Sets h = e + f. See my Robust Predicates paper for details. */
- /* */
- /* If round-to-even is used (as with IEEE 754), maintains the strongly */
- /* nonoverlapping property. (That is, if e is strongly nonoverlapping, h */
- /* will be also.) Does NOT maintain the nonoverlapping or nonadjacent */
- /* properties. */
- /* */
- /*****************************************************************************/
-
- int fast_expansion_sum_zeroelim(int elen,double *e,int flen,double *f,double *h) /* h cannot be e or f. */
- {
- double Q;
- INEXACT double Qnew;
- INEXACT double hh;
- INEXACT double bvirt;
- double avirt, bround, around;
- int eindex, findex, hindex;
- double enow, fnow;
-
- enow = e[0];
- fnow = f[0];
- eindex = findex = 0;
- if ((fnow > enow) == (fnow > -enow)) {
- Q = enow;
- enow = e[++eindex];
- } else {
- Q = fnow;
- fnow = f[++findex];
- }
- hindex = 0;
- if ((eindex < elen) && (findex < flen)) {
- if ((fnow > enow) == (fnow > -enow)) {
- Fast_Two_Sum(enow, Q, Qnew, hh);
- enow = e[++eindex];
- } else {
- Fast_Two_Sum(fnow, Q, Qnew, hh);
- fnow = f[++findex];
- }
- Q = Qnew;
- if (hh != 0.0) {
- h[hindex++] = hh;
- }
- while ((eindex < elen) && (findex < flen)) {
- if ((fnow > enow) == (fnow > -enow)) {
- Two_Sum(Q, enow, Qnew, hh);
- enow = e[++eindex];
- } else {
- Two_Sum(Q, fnow, Qnew, hh);
- fnow = f[++findex];
- }
- Q = Qnew;
- if (hh != 0.0) {
- h[hindex++] = hh;
- }
- }
- }
- while (eindex < elen) {
- Two_Sum(Q, enow, Qnew, hh);
- enow = e[++eindex];
- Q = Qnew;
- if (hh != 0.0) {
- h[hindex++] = hh;
- }
- }
- while (findex < flen) {
- Two_Sum(Q, fnow, Qnew, hh);
- fnow = f[++findex];
- Q = Qnew;
- if (hh != 0.0) {
- h[hindex++] = hh;
- }
- }
- if ((Q != 0.0) || (hindex == 0)) {
- h[hindex++] = Q;
- }
- return hindex;
- }
-
- /*****************************************************************************/
- /* */
- /* scale_expansion_zeroelim() Multiply an expansion by a scalar, */
- /* eliminating zero components from the */
- /* output expansion. */
- /* */
- /* Sets h = be. See my Robust Predicates paper for details. */
- /* */
- /* Maintains the nonoverlapping property. If round-to-even is used (as */
- /* with IEEE 754), maintains the strongly nonoverlapping and nonadjacent */
- /* properties as well. (That is, if e has one of these properties, so */
- /* will h.) */
- /* */
- /*****************************************************************************/
-
- int scale_expansion_zeroelim(int elen,double *e,double b,double *h) /* e and h cannot be the same. */
- {
- INEXACT double Q, sum;
- double hh;
- INEXACT double product1;
- double product0;
- int eindex, hindex;
- double enow;
- INEXACT double bvirt;
- double avirt, bround, around;
- INEXACT double c;
- INEXACT double abig;
- double ahi, alo, bhi, blo;
- double err1, err2, err3;
-
- Split(b, bhi, blo);
- Two_Product_Presplit(e[0], b, bhi, blo, Q, hh);
- hindex = 0;
- if (hh != 0) {
- h[hindex++] = hh;
- }
- for (eindex = 1; eindex < elen; eindex++) {
- enow = e[eindex];
- Two_Product_Presplit(enow, b, bhi, blo, product1, product0);
- Two_Sum(Q, product0, sum, hh);
- if (hh != 0) {
- h[hindex++] = hh;
- }
- Fast_Two_Sum(product1, sum, Q, hh);
- if (hh != 0) {
- h[hindex++] = hh;
- }
- }
- if ((Q != 0.0) || (hindex == 0)) {
- h[hindex++] = Q;
- }
- return hindex;
- }
-
- /*****************************************************************************/
- /* */
- /* estimate() Produce a one-word estimate of an expansion's value. */
- /* */
- /* See my Robust Predicates paper for details. */
- /* */
- /*****************************************************************************/
-
- double estimate(int elen, double *e)
- {
- double Q;
- int eindex;
-
- Q = e[0];
- for (eindex = 1; eindex < elen; eindex++) {
- Q += e[eindex];
- }
- return Q;
- }
-
- /*****************************************************************************/
- /* */
- /* counterclockwise() Return a positive value if the points pa, pb, and */
- /* pc occur in counterclockwise order; a negative */
- /* value if they occur in clockwise order; and zero */
- /* if they are collinear. The result is also a rough */
- /* approximation of twice the signed area of the */
- /* triangle defined by the three points. */
- /* */
- /* Uses exact arithmetic if necessary to ensure a correct answer. The */
- /* result returned is the determinant of a matrix. This determinant is */
- /* computed adaptively, in the sense that exact arithmetic is used only to */
- /* the degree it is needed to ensure that the returned value has the */
- /* correct sign. Hence, this function is usually quite fast, but will run */
- /* more slowly when the input points are collinear or nearly so. */
- /* */
- /* See my Robust Predicates paper for details. */
- /* */
- /*****************************************************************************/
-
- double counterclockwiseadapt(
- point pa,
- point pb,
- point pc,
- double detsum)
- {
- INEXACT double acx, acy, bcx, bcy;
- double acxtail, acytail, bcxtail, bcytail;
- INEXACT double detleft, detright;
- double detlefttail, detrighttail;
- double det, errbound;
- double B[4], C1[8], C2[12], D[16];
- INEXACT double B3;
- int C1length, C2length, Dlength;
- double u[4];
- INEXACT double u3;
- INEXACT double s1, t1;
- double s0, t0;
-
- INEXACT double bvirt;
- double avirt, bround, around;
- INEXACT double c;
- INEXACT double abig;
- double ahi, alo, bhi, blo;
- double err1, err2, err3;
- INEXACT double _i, _j;
- double _0;
-
- acx = (double) (pa[0] - pc[0]);
- bcx = (double) (pb[0] - pc[0]);
- acy = (double) (pa[1] - pc[1]);
- bcy = (double) (pb[1] - pc[1]);
-
- Two_Product(acx, bcy, detleft, detlefttail);
- Two_Product(acy, bcx, detright, detrighttail);
-
- Two_Two_Diff(detleft, detlefttail, detright, detrighttail,
- B3, B[2], B[1], B[0]);
- B[3] = B3;
-
- det = estimate(4, B);
- errbound = ccwerrboundB * detsum;
- if ((det >= errbound) || (-det >= errbound)) {
- return det;
- }
-
- Two_Diff_Tail(pa[0], pc[0], acx, acxtail);
- Two_Diff_Tail(pb[0], pc[0], bcx, bcxtail);
- Two_Diff_Tail(pa[1], pc[1], acy, acytail);
- Two_Diff_Tail(pb[1], pc[1], bcy, bcytail);
-
- if ((acxtail == 0.0) && (acytail == 0.0)
- && (bcxtail == 0.0) && (bcytail == 0.0)) {
- return det;
- }
-
- errbound = ccwerrboundC * detsum + resulterrbound * Absolute(det);
- det += (acx * bcytail + bcy * acxtail)
- - (acy * bcxtail + bcx * acytail);
- if ((det >= errbound) || (-det >= errbound)) {
- return det;
- }
-
- Two_Product(acxtail, bcy, s1, s0);
- Two_Product(acytail, bcx, t1, t0);
- Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
- u[3] = u3;
- C1length = fast_expansion_sum_zeroelim(4, B, 4, u, C1);
-
- Two_Product(acx, bcytail, s1, s0);
- Two_Product(acy, bcxtail, t1, t0);
- Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
- u[3] = u3;
- C2length = fast_expansion_sum_zeroelim(C1length, C1, 4, u, C2);
-
- Two_Product(acxtail, bcytail, s1, s0);
- Two_Product(acytail, bcxtail, t1, t0);
- Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
- u[3] = u3;
- Dlength = fast_expansion_sum_zeroelim(C2length, C2, 4, u, D);
-
- return(D[Dlength - 1]);
- }
-
- double counterclockwise(
- point pa,
- point pb,
- point pc)
- {
- double detleft, detright, det;
- double detsum, errbound;
-
- counterclockcount++;
-
- detleft = (pa[0] - pc[0]) * (pb[1] - pc[1]);
- detright = (pa[1] - pc[1]) * (pb[0] - pc[0]);
- det = detleft - detright;
-
- if (detleft > 0.0) {
- if (detright <= 0.0) {
- return det;
- } else {
- detsum = detleft + detright;
- }
- } else if (detleft < 0.0) {
- if (detright >= 0.0) {
- return det;
- } else {
- detsum = -detleft - detright;
- }
- } else {
- return det;
- }
-
- errbound = ccwerrboundA * detsum;
- if ((det >= errbound) || (-det >= errbound)) {
- return det;
- }
-
- return counterclockwiseadapt(pa, pb, pc, detsum);
- }
-
- /*****************************************************************************/
- /* */
- /* incircle() Return a positive value if the point pd lies inside the */
- /* circle passing through pa, pb, and pc; a negative value if */
- /* it lies outside; and zero if the four points are cocircular.*/
- /* The points pa, pb, and pc must be in counterclockwise */
- /* order, or the sign of the result will be reversed. */
- /* */
- /* Uses exact arithmetic if necessary to ensure a correct answer. The */
- /* result returned is the determinant of a matrix. This determinant is */
- /* computed adaptively, in the sense that exact arithmetic is used only to */
- /* the degree it is needed to ensure that the returned value has the */
- /* correct sign. Hence, this function is usually quite fast, but will run */
- /* more slowly when the input points are cocircular or nearly so. */
- /* */
- /* See my Robust Predicates paper for details. */
- /* */
- /*****************************************************************************/
-
- double incircleadapt(
- point pa,
- point pb,
- point pc,
- point pd,
- double permanent)
- {
- INEXACT double adx, bdx, cdx, ady, bdy, cdy;
- double det, errbound;
-
- INEXACT double bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1;
- double bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0;
- double bc[4], ca[4], ab[4];
- INEXACT double bc3, ca3, ab3;
- double axbc[8], axxbc[16], aybc[8], ayybc[16], adet[32];
- int axbclen, axxbclen, aybclen, ayybclen, alen;
- double bxca[8], bxxca[16], byca[8], byyca[16], bdet[32];
- int bxcalen, bxxcalen, bycalen, byycalen, blen;
- double cxab[8], cxxab[16], cyab[8], cyyab[16], cdet[32];
- int cxablen, cxxablen, cyablen, cyyablen, clen;
- double abdet[64];
- int ablen;
- double fin1[1152], fin2[1152];
- double *finnow, *finother, *finswap;
- int finlength;
-
- double adxtail, bdxtail, cdxtail, adytail, bdytail, cdytail;
- INEXACT double adxadx1, adyady1, bdxbdx1, bdybdy1, cdxcdx1, cdycdy1;
- double adxadx0, adyady0, bdxbdx0, bdybdy0, cdxcdx0, cdycdy0;
- double aa[4], bb[4], cc[4];
- INEXACT double aa3, bb3, cc3;
- INEXACT double ti1, tj1;
- double ti0, tj0;
- double u[4], v[4];
- INEXACT double u3, v3;
- double temp8[8], temp16a[16], temp16b[16], temp16c[16];
- double temp32a[32], temp32b[32], temp48[48], temp64[64];
- int temp8len, temp16alen, temp16blen, temp16clen;
- int temp32alen, temp32blen, temp48len, temp64len;
- double axtbb[8], axtcc[8], aytbb[8], aytcc[8];
- int axtbblen, axtcclen, aytbblen, aytcclen;
- double bxtaa[8], bxtcc[8], bytaa[8], bytcc[8];
- int bxtaalen, bxtcclen, bytaalen, bytcclen;
- double cxtaa[8], cxtbb[8], cytaa[8], cytbb[8];
- int cxtaalen, cxtbblen, cytaalen, cytbblen;
- double axtbc[8], aytbc[8], bxtca[8], bytca[8], cxtab[8], cytab[8];
- int axtbclen, aytbclen, bxtcalen, bytcalen, cxtablen, cytablen;
- double axtbct[16], aytbct[16], bxtcat[16], bytcat[16], cxtabt[16], cytabt[16];
- int axtbctlen, aytbctlen, bxtcatlen, bytcatlen, cxtabtlen, cytabtlen;
- double axtbctt[8], aytbctt[8], bxtcatt[8];
- double bytcatt[8], cxtabtt[8], cytabtt[8];
- int axtbcttlen, aytbcttlen, bxtcattlen, bytcattlen, cxtabttlen, cytabttlen;
- double abt[8], bct[8], cat[8];
- int abtlen, bctlen, catlen;
- double abtt[4], bctt[4], catt[4];
- int abttlen, bcttlen, cattlen;
- INEXACT double abtt3, bctt3, catt3;
- double negate;
-
- INEXACT double bvirt;
- double avirt, bround, around;
- INEXACT double c;
- INEXACT double abig;
- double ahi, alo, bhi, blo;
- double err1, err2, err3;
- INEXACT double _i, _j;
- double _0;
-
- adx = (double) (pa[0] - pd[0]);
- bdx = (double) (pb[0] - pd[0]);
- cdx = (double) (pc[0] - pd[0]);
- ady = (double) (pa[1] - pd[1]);
- bdy = (double) (pb[1] - pd[1]);
- cdy = (double) (pc[1] - pd[1]);
-
- Two_Product(bdx, cdy, bdxcdy1, bdxcdy0);
- Two_Product(cdx, bdy, cdxbdy1, cdxbdy0);
- Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]);
- bc[3] = bc3;
- axbclen = scale_expansion_zeroelim(4, bc, adx, axbc);
- axxbclen = scale_expansion_zeroelim(axbclen, axbc, adx, axxbc);
- aybclen = scale_expansion_zeroelim(4, bc, ady, aybc);
- ayybclen = scale_expansion_zeroelim(aybclen, aybc, ady, ayybc);
- alen = fast_expansion_sum_zeroelim(axxbclen, axxbc, ayybclen, ayybc, adet);
-
- Two_Product(cdx, ady, cdxady1, cdxady0);
- Two_Product(adx, cdy, adxcdy1, adxcdy0);
- Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]);
- ca[3] = ca3;
- bxcalen = scale_expansion_zeroelim(4, ca, bdx, bxca);
- bxxcalen = scale_expansion_zeroelim(bxcalen, bxca, bdx, bxxca);
- bycalen = scale_expansion_zeroelim(4, ca, bdy, byca);
- byycalen = scale_expansion_zeroelim(bycalen, byca, bdy, byyca);
- blen = fast_expansion_sum_zeroelim(bxxcalen, bxxca, byycalen, byyca, bdet);
-
- Two_Product(adx, bdy, adxbdy1, adxbdy0);
- Two_Product(bdx, ady, bdxady1, bdxady0);
- Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]);
- ab[3] = ab3;
- cxablen = scale_expansion_zeroelim(4, ab, cdx, cxab);
- cxxablen = scale_expansion_zeroelim(cxablen, cxab, cdx, cxxab);
- cyablen = scale_expansion_zeroelim(4, ab, cdy, cyab);
- cyyablen = scale_expansion_zeroelim(cyablen, cyab, cdy, cyyab);
- clen = fast_expansion_sum_zeroelim(cxxablen, cxxab, cyyablen, cyyab, cdet);
-
- ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
- finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1);
-
- det = estimate(finlength, fin1);
- errbound = iccerrboundB * permanent;
- if ((det >= errbound) || (-det >= errbound)) {
- return det;
- }
-
- Two_Diff_Tail(pa[0], pd[0], adx, adxtail);
- Two_Diff_Tail(pa[1], pd[1], ady, adytail);
- Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail);
- Two_Diff_Tail(pb[1], pd[1], bdy, bdytail);
- Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail);
- Two_Diff_Tail(pc[1], pd[1], cdy, cdytail);
- if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0)
- && (adytail == 0.0) && (bdytail == 0.0) && (cdytail == 0.0)) {
- return det;
- }
-
- errbound = iccerrboundC * permanent + resulterrbound * Absolute(det);
- det += ((adx * adx + ady * ady) * ((bdx * cdytail + cdy * bdxtail)
- - (bdy * cdxtail + cdx * bdytail))
- + 2.0 * (adx * adxtail + ady * adytail) * (bdx * cdy - bdy * cdx))
- + ((bdx * bdx + bdy * bdy) * ((cdx * adytail + ady * cdxtail)
- - (cdy * adxtail + adx * cdytail))
- + 2.0 * (bdx * bdxtail + bdy * bdytail) * (cdx * ady - cdy * adx))
- + ((cdx * cdx + cdy * cdy) * ((adx * bdytail + bdy * adxtail)
- - (ady * bdxtail + bdx * adytail))
- + 2.0 * (cdx * cdxtail + cdy * cdytail) * (adx * bdy - ady * bdx));
- if ((det >= errbound) || (-det >= errbound)) {
- return det;
- }
-
- finnow = fin1;
- finother = fin2;
-
- if ((bdxtail != 0.0) || (bdytail != 0.0)
- || (cdxtail != 0.0) || (cdytail != 0.0)) {
- Square(adx, adxadx1, adxadx0);
- Square(ady, adyady1, adyady0);
- Two_Two_Sum(adxadx1, adxadx0, adyady1, adyady0, aa3, aa[2], aa[1], aa[0]);
- aa[3] = aa3;
- }
- if ((cdxtail != 0.0) || (cdytail != 0.0)
- || (adxtail != 0.0) || (adytail != 0.0)) {
- Square(bdx, bdxbdx1, bdxbdx0);
- Square(bdy, bdybdy1, bdybdy0);
- Two_Two_Sum(bdxbdx1, bdxbdx0, bdybdy1, bdybdy0, bb3, bb[2], bb[1], bb[0]);
- bb[3] = bb3;
- }
- if ((adxtail != 0.0) || (adytail != 0.0)
- || (bdxtail != 0.0) || (bdytail != 0.0)) {
- Square(cdx, cdxcdx1, cdxcdx0);
- Square(cdy, cdycdy1, cdycdy0);
- Two_Two_Sum(cdxcdx1, cdxcdx0, cdycdy1, cdycdy0, cc3, cc[2], cc[1], cc[0]);
- cc[3] = cc3;
- }
-
- if (adxtail != 0.0) {
- axtbclen = scale_expansion_zeroelim(4, bc, adxtail, axtbc);
- temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, 2.0 * adx,
- temp16a);
-
- axtcclen = scale_expansion_zeroelim(4, cc, adxtail, axtcc);
- temp16blen = scale_expansion_zeroelim(axtcclen, axtcc, bdy, temp16b);
-
- axtbblen = scale_expansion_zeroelim(4, bb, adxtail, axtbb);
- temp16clen = scale_expansion_zeroelim(axtbblen, axtbb, -cdy, temp16c);
-
- temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
- temp16blen, temp16b, temp32a);
- temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
- temp32alen, temp32a, temp48);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
- temp48, finother);
- finswap = finnow; finnow = finother; finother = finswap;
- }
- if (adytail != 0.0) {
- aytbclen = scale_expansion_zeroelim(4, bc, adytail, aytbc);
- temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, 2.0 * ady,
- temp16a);
-
- aytbblen = scale_expansion_zeroelim(4, bb, adytail, aytbb);
- temp16blen = scale_expansion_zeroelim(aytbblen, aytbb, cdx, temp16b);
-
- aytcclen = scale_expansion_zeroelim(4, cc, adytail, aytcc);
- temp16clen = scale_expansion_zeroelim(aytcclen, aytcc, -bdx, temp16c);
-
- temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
- temp16blen, temp16b, temp32a);
- temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
- temp32alen, temp32a, temp48);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
- temp48, finother);
- finswap = finnow; finnow = finother; finother = finswap;
- }
- if (bdxtail != 0.0) {
- bxtcalen = scale_expansion_zeroelim(4, ca, bdxtail, bxtca);
- temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, 2.0 * bdx,
- temp16a);
-
- bxtaalen = scale_expansion_zeroelim(4, aa, bdxtail, bxtaa);
- temp16blen = scale_expansion_zeroelim(bxtaalen, bxtaa, cdy, temp16b);
-
- bxtcclen = scale_expansion_zeroelim(4, cc, bdxtail, bxtcc);
- temp16clen = scale_expansion_zeroelim(bxtcclen, bxtcc, -ady, temp16c);
-
- temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
- temp16blen, temp16b, temp32a);
- temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
- temp32alen, temp32a, temp48);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
- temp48, finother);
- finswap = finnow; finnow = finother; finother = finswap;
- }
- if (bdytail != 0.0) {
- bytcalen = scale_expansion_zeroelim(4, ca, bdytail, bytca);
- temp16alen = scale_expansion_zeroelim(bytcalen, bytca, 2.0 * bdy,
- temp16a);
-
- bytcclen = scale_expansion_zeroelim(4, cc, bdytail, bytcc);
- temp16blen = scale_expansion_zeroelim(bytcclen, bytcc, adx, temp16b);
-
- bytaalen = scale_expansion_zeroelim(4, aa, bdytail, bytaa);
- temp16clen = scale_expansion_zeroelim(bytaalen, bytaa, -cdx, temp16c);
-
- temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
- temp16blen, temp16b, temp32a);
- temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
- temp32alen, temp32a, temp48);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
- temp48, finother);
- finswap = finnow; finnow = finother; finother = finswap;
- }
- if (cdxtail != 0.0) {
- cxtablen = scale_expansion_zeroelim(4, ab, cdxtail, cxtab);
- temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, 2.0 * cdx,
- temp16a);
-
- cxtbblen = scale_expansion_zeroelim(4, bb, cdxtail, cxtbb);
- temp16blen = scale_expansion_zeroelim(cxtbblen, cxtbb, ady, temp16b);
-
- cxtaalen = scale_expansion_zeroelim(4, aa, cdxtail, cxtaa);
- temp16clen = scale_expansion_zeroelim(cxtaalen, cxtaa, -bdy, temp16c);
-
- temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
- temp16blen, temp16b, temp32a);
- temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
- temp32alen, temp32a, temp48);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
- temp48, finother);
- finswap = finnow; finnow = finother; finother = finswap;
- }
- if (cdytail != 0.0) {
- cytablen = scale_expansion_zeroelim(4, ab, cdytail, cytab);
- temp16alen = scale_expansion_zeroelim(cytablen, cytab, 2.0 * cdy,
- temp16a);
-
- cytaalen = scale_expansion_zeroelim(4, aa, cdytail, cytaa);
- temp16blen = scale_expansion_zeroelim(cytaalen, cytaa, bdx, temp16b);
-
- cytbblen = scale_expansion_zeroelim(4, bb, cdytail, cytbb);
- temp16clen = scale_expansion_zeroelim(cytbblen, cytbb, -adx, temp16c);
-
- temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
- temp16blen, temp16b, temp32a);
- temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
- temp32alen, temp32a, temp48);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
- temp48, finother);
- finswap = finnow; finnow = finother; finother = finswap;
- }
-
- if ((adxtail != 0.0) || (adytail != 0.0)) {
- if ((bdxtail != 0.0) || (bdytail != 0.0)
- || (cdxtail != 0.0) || (cdytail != 0.0)) {
- Two_Product(bdxtail, cdy, ti1, ti0);
- Two_Product(bdx, cdytail, tj1, tj0);
- Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
- u[3] = u3;
- negate = -bdy;
- Two_Product(cdxtail, negate, ti1, ti0);
- negate = -bdytail;
- Two_Product(cdx, negate, tj1, tj0);
- Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
- v[3] = v3;
- bctlen = fast_expansion_sum_zeroelim(4, u, 4, v, bct);
-
- Two_Product(bdxtail, cdytail, ti1, ti0);
- Two_Product(cdxtail, bdytail, tj1, tj0);
- Two_Two_Diff(ti1, ti0, tj1, tj0, bctt3, bctt[2], bctt[1], bctt[0]);
- bctt[3] = bctt3;
- bcttlen = 4;
- } else {
- bct[0] = 0.0;
- bctlen = 1;
- bctt[0] = 0.0;
- bcttlen = 1;
- }
-
- if (adxtail != 0.0) {
- temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, adxtail, temp16a);
- axtbctlen = scale_expansion_zeroelim(bctlen, bct, adxtail, axtbct);
- temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, 2.0 * adx,
- temp32a);
- temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
- temp32alen, temp32a, temp48);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
- temp48, finother);
- finswap = finnow; finnow = finother; finother = finswap;
- if (bdytail != 0.0) {
- temp8len = scale_expansion_zeroelim(4, cc, adxtail, temp8);
- temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail,
- temp16a);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
- temp16a, finother);
- finswap = finnow; finnow = finother; finother = finswap;
- }
- if (cdytail != 0.0) {
- temp8len = scale_expansion_zeroelim(4, bb, -adxtail, temp8);
- temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail,
- temp16a);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
- temp16a, finother);
- finswap = finnow; finnow = finother; finother = finswap;
- }
-
- temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, adxtail,
- temp32a);
- axtbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adxtail, axtbctt);
- temp16alen = scale_expansion_zeroelim(axtbcttlen, axtbctt, 2.0 * adx,
- temp16a);
- temp16blen = scale_expansion_zeroelim(axtbcttlen, axtbctt, adxtail,
- temp16b);
- temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
- temp16blen, temp16b, temp32b);
- temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
- temp32blen, temp32b, temp64);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
- temp64, finother);
- finswap = finnow; finnow = finother; finother = finswap;
- }
- if (adytail != 0.0) {
- temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, adytail, temp16a);
- aytbctlen = scale_expansion_zeroelim(bctlen, bct, adytail, aytbct);
- temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, 2.0 * ady,
- temp32a);
- temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
- temp32alen, temp32a, temp48);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
- temp48, finother);
- finswap = finnow; finnow = finother; finother = finswap;
-
-
- temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, adytail,
- temp32a);
- aytbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adytail, aytbctt);
- temp16alen = scale_expansion_zeroelim(aytbcttlen, aytbctt, 2.0 * ady,
- temp16a);
- temp16blen = scale_expansion_zeroelim(aytbcttlen, aytbctt, adytail,
- temp16b);
- temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
- temp16blen, temp16b, temp32b);
- temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
- temp32blen, temp32b, temp64);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
- temp64, finother);
- finswap = finnow; finnow = finother; finother = finswap;
- }
- }
- if ((bdxtail != 0.0) || (bdytail != 0.0)) {
- if ((cdxtail != 0.0) || (cdytail != 0.0)
- || (adxtail != 0.0) || (adytail != 0.0)) {
- Two_Product(cdxtail, ady, ti1, ti0);
- Two_Product(cdx, adytail, tj1, tj0);
- Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
- u[3] = u3;
- negate = -cdy;
- Two_Product(adxtail, negate, ti1, ti0);
- negate = -cdytail;
- Two_Product(adx, negate, tj1, tj0);
- Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
- v[3] = v3;
- catlen = fast_expansion_sum_zeroelim(4, u, 4, v, cat);
-
- Two_Product(cdxtail, adytail, ti1, ti0);
- Two_Product(adxtail, cdytail, tj1, tj0);
- Two_Two_Diff(ti1, ti0, tj1, tj0, catt3, catt[2], catt[1], catt[0]);
- catt[3] = catt3;
- cattlen = 4;
- } else {
- cat[0] = 0.0;
- catlen = 1;
- catt[0] = 0.0;
- cattlen = 1;
- }
-
- if (bdxtail != 0.0) {
- temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, bdxtail, temp16a);
- bxtcatlen = scale_expansion_zeroelim(catlen, cat, bdxtail, bxtcat);
- temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, 2.0 * bdx,
- temp32a);
- temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
- temp32alen, temp32a, temp48);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
- temp48, finother);
- finswap = finnow; finnow = finother; finother = finswap;
- if (cdytail != 0.0) {
- temp8len = scale_expansion_zeroelim(4, aa, bdxtail, temp8);
- temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail,
- temp16a);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
- temp16a, finother);
- finswap = finnow; finnow = finother; finother = finswap;
- }
- if (adytail != 0.0) {
- temp8len = scale_expansion_zeroelim(4, cc, -bdxtail, temp8);
- temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail,
- temp16a);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
- temp16a, finother);
- finswap = finnow; finnow = finother; finother = finswap;
- }
-
- temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, bdxtail,
- temp32a);
- bxtcattlen = scale_expansion_zeroelim(cattlen, catt, bdxtail, bxtcatt);
- temp16alen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, 2.0 * bdx,
- temp16a);
- temp16blen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, bdxtail,
- temp16b);
- temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
- temp16blen, temp16b, temp32b);
- temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
- temp32blen, temp32b, temp64);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
- temp64, finother);
- finswap = finnow; finnow = finother; finother = finswap;
- }
- if (bdytail != 0.0) {
- temp16alen = scale_expansion_zeroelim(bytcalen, bytca, bdytail, temp16a);
- bytcatlen = scale_expansion_zeroelim(catlen, cat, bdytail, bytcat);
- temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, 2.0 * bdy,
- temp32a);
- temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
- temp32alen, temp32a, temp48);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
- temp48, finother);
- finswap = finnow; finnow = finother; finother = finswap;
-
-
- temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, bdytail,
- temp32a);
- bytcattlen = scale_expansion_zeroelim(cattlen, catt, bdytail, bytcatt);
- temp16alen = scale_expansion_zeroelim(bytcattlen, bytcatt, 2.0 * bdy,
- temp16a);
- temp16blen = scale_expansion_zeroelim(bytcattlen, bytcatt, bdytail,
- temp16b);
- temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
- temp16blen, temp16b, temp32b);
- temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
- temp32blen, temp32b, temp64);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
- temp64, finother);
- finswap = finnow; finnow = finother; finother = finswap;
- }
- }
- if ((cdxtail != 0.0) || (cdytail != 0.0)) {
- if ((adxtail != 0.0) || (adytail != 0.0)
- || (bdxtail != 0.0) || (bdytail != 0.0)) {
- Two_Product(adxtail, bdy, ti1, ti0);
- Two_Product(adx, bdytail, tj1, tj0);
- Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
- u[3] = u3;
- negate = -ady;
- Two_Product(bdxtail, negate, ti1, ti0);
- negate = -adytail;
- Two_Product(bdx, negate, tj1, tj0);
- Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
- v[3] = v3;
- abtlen = fast_expansion_sum_zeroelim(4, u, 4, v, abt);
-
- Two_Product(adxtail, bdytail, ti1, ti0);
- Two_Product(bdxtail, adytail, tj1, tj0);
- Two_Two_Diff(ti1, ti0, tj1, tj0, abtt3, abtt[2], abtt[1], abtt[0]);
- abtt[3] = abtt3;
- abttlen = 4;
- } else {
- abt[0] = 0.0;
- abtlen = 1;
- abtt[0] = 0.0;
- abttlen = 1;
- }
-
- if (cdxtail != 0.0) {
- temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, cdxtail, temp16a);
- cxtabtlen = scale_expansion_zeroelim(abtlen, abt, cdxtail, cxtabt);
- temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, 2.0 * cdx,
- temp32a);
- temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
- temp32alen, temp32a, temp48);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
- temp48, finother);
- finswap = finnow; finnow = finother; finother = finswap;
- if (adytail != 0.0) {
- temp8len = scale_expansion_zeroelim(4, bb, cdxtail, temp8);
- temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail,
- temp16a);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
- temp16a, finother);
- finswap = finnow; finnow = finother; finother = finswap;
- }
- if (bdytail != 0.0) {
- temp8len = scale_expansion_zeroelim(4, aa, -cdxtail, temp8);
- temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail,
- temp16a);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
- temp16a, finother);
- finswap = finnow; finnow = finother; finother = finswap;
- }
-
- temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, cdxtail,
- temp32a);
- cxtabttlen = scale_expansion_zeroelim(abttlen, abtt, cdxtail, cxtabtt);
- temp16alen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, 2.0 * cdx,
- temp16a);
- temp16blen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, cdxtail,
- temp16b);
- temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
- temp16blen, temp16b, temp32b);
- temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
- temp32blen, temp32b, temp64);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
- temp64, finother);
- finswap = finnow; finnow = finother; finother = finswap;
- }
- if (cdytail != 0.0) {
- temp16alen = scale_expansion_zeroelim(cytablen, cytab, cdytail, temp16a);
- cytabtlen = scale_expansion_zeroelim(abtlen, abt, cdytail, cytabt);
- temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, 2.0 * cdy,
- temp32a);
- temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
- temp32alen, temp32a, temp48);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
- temp48, finother);
- finswap = finnow; finnow = finother; finother = finswap;
-
-
- temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, cdytail,
- temp32a);
- cytabttlen = scale_expansion_zeroelim(abttlen, abtt, cdytail, cytabtt);
- temp16alen = scale_expansion_zeroelim(cytabttlen, cytabtt, 2.0 * cdy,
- temp16a);
- temp16blen = scale_expansion_zeroelim(cytabttlen, cytabtt, cdytail,
- temp16b);
- temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
- temp16blen, temp16b, temp32b);
- temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
- temp32blen, temp32b, temp64);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
- temp64, finother);
- finswap = finnow; finnow = finother; finother = finswap;
- }
- }
-
- return finnow[finlength - 1];
- }
-
- double incircle(
- point pa,
- point pb,
- point pc,
- point pd)
- {
- double adx, bdx, cdx, ady, bdy, cdy;
- double bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady;
- double alift, blift, clift;
- double det;
- double permanent, errbound;
-
- incirclecount++;
-
- adx = pa[0] - pd[0];
- bdx = pb[0] - pd[0];
- cdx = pc[0] - pd[0];
- ady = pa[1] - pd[1];
- bdy = pb[1] - pd[1];
- cdy = pc[1] - pd[1];
-
- bdxcdy = bdx * cdy;
- cdxbdy = cdx * bdy;
- alift = adx * adx + ady * ady;
-
- cdxady = cdx * ady;
- adxcdy = adx * cdy;
- blift = bdx * bdx + bdy * bdy;
-
- adxbdy = adx * bdy;
- bdxady = bdx * ady;
- clift = cdx * cdx + cdy * cdy;
-
- det = alift * (bdxcdy - cdxbdy)
- + blift * (cdxady - adxcdy)
- + clift * (adxbdy - bdxady);
-
- permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * alift
- + (Absolute(cdxady) + Absolute(adxcdy)) * blift
- + (Absolute(adxbdy) + Absolute(bdxady)) * clift;
- errbound = iccerrboundA * permanent;
- if ((det > errbound) || (-det > errbound)) {
- return det;
- }
-
- return incircleadapt(pa, pb, pc, pd, permanent);
- }
-
- /** **/
- /** **/
- /********* Determinant evaluation routines end here *********/
-
- /*****************************************************************************/
- /* */
- /* triangleinit() Initialize some variables. */
- /* */
- /*****************************************************************************/
-
- void triangleinit(void)
- {
- points.maxitems = triangles.maxitems = shelles.maxitems = viri.maxitems =
- badsegments.maxitems = badtriangles.maxitems = splaynodes.maxitems = 0l;
- points.itembytes = triangles.itembytes = shelles.itembytes = viri.itembytes =
- badsegments.itembytes = badtriangles.itembytes = splaynodes.itembytes = 0;
- recenttri.tri = (triangle *) NULL; /* No triangle has been visited yet. */
- samples = 1; /* Point location should take at least one sample. */
- checksegments = 0; /* There are no segments in the triangulation yet. */
- incirclecount = counterclockcount = hyperbolacount = 0;
- circumcentercount = circletopcount = 0;
- randomseed = 1;
-
- exactinit(); /* Initialize exact arithmetic constants. */
- }
-
- /*****************************************************************************/
- /* */
- /* randomnation() Generate a random number between 0 and `choices' - 1. */
- /* */
- /* This is a simple linear congruential random number generator. Hence, it */
- /* is a bad random number generator, but good enough for most randomized */
- /* geometric algorithms. */
- /* */
- /*****************************************************************************/
-
- unsigned long randomnation(unsigned int choices)
- {
- randomseed = (randomseed * 1366l + 150889l) % 714025l;
- return randomseed / (714025l / choices + 1);
- }
-
-
- /********* Point location routines begin here *********/
- /** **/
- /** **/
-
- /*****************************************************************************/
- /* */
- /* makepointmap() Construct a mapping from points to triangles to improve */
- /* the speed of point location for segment insertion. */
- /* */
- /* Traverses all the triangles, and provides each corner of each triangle */
- /* with a pointer to that triangle. Of course, pointers will be */
- /* overwritten by other pointers because (almost) each point is a corner */
- /* of several triangles, but in the end every point will point to some */
- /* triangle that contains it. */
- /* */
- /*****************************************************************************/
-
- void makepointmap(void)
- {
- struct triedge triangleloop;
- point triorg;
-
- traversalinit(&triangles);
- triangleloop.tri = triangletraverse();
- while (triangleloop.tri != (triangle *) NULL) {
- /* Check all three points of the triangle. */
- for (triangleloop.orient = 0; triangleloop.orient < 3;
- triangleloop.orient++) {
- org(triangleloop, triorg);
- setpoint2tri(triorg, encode(triangleloop));
- }
- triangleloop.tri = triangletraverse();
- }
- }
-
- /*****************************************************************************/
- /* */
- /* preciselocate() Find a triangle or edge containing a given point. */
- /* */
- /* Begins its search from `searchtri'. It is important that `searchtri' */
- /* be a handle with the property that `searchpoint' is strictly to the left */
- /* of the edge denoted by `searchtri', or is collinear with that edge and */
- /* does not intersect that edge. (In particular, `searchpoint' should not */
- /* be the origin or destination of that edge.) */
- /* */
- /* These conditions are imposed because preciselocate() is normally used in */
- /* one of two situations: */
- /* */
- /* (1) To try to find the location to insert a new point. Normally, we */
- /* know an edge that the point is strictly to the left of. In the */
- /* incremental Delaunay algorithm, that edge is a bounding box edge. */
- /* In Ruppert's Delaunay refinement algorithm for quality meshing, */
- /* that edge is the shortest edge of the triangle whose circumcenter */
- /* is being inserted. */
- /* */
- /* (2) To try to find an existing point. In this case, any edge on the */
- /* convex hull is a good starting edge. The possibility that the */
- /* vertex one seeks is an endpoint of the starting edge must be */
- /* screened out before preciselocate() is called. */
- /* */
- /* On completion, `searchtri' is a triangle that contains `searchpoint'. */
- /* */
- /* This implementation differs from that given by Guibas and Stolfi. It */
- /* walks from triangle to triangle, crossing an edge only if `searchpoint' */
- /* is on the other side of the line containing that edge. After entering */
- /* a triangle, there are two edges by which one can leave that triangle. */
- /* If both edges are valid (`searchpoint' is on the other side of both */
- /* edges), one of the two is chosen by drawing a line perpendicular to */
- /* the entry edge (whose endpoints are `forg' and `fdest') passing through */
- /* `fapex'. Depending on which side of this perpendicular `searchpoint' */
- /* falls on, an exit edge is chosen. */
- /* */
- /* This implementation is empirically faster than the Guibas and Stolfi */
- /* point location routine (which I originally used), which tends to spiral */
- /* in toward its target. */
- /* */
- /* Returns ONVERTEX if the point lies on an existing vertex. `searchtri' */
- /* is a handle whose origin is the existing vertex. */
- /* */
- /* Returns ONEDGE if the point lies on a mesh edge. `searchtri' is a */
- /* handle whose primary edge is the edge on which the point lies. */
- /* */
- /* Returns INTRIANGLE if the point lies strictly within a triangle. */
- /* `searchtri' is a handle on the triangle that contains the point. */
- /* */
- /* Returns OUTSIDE if the point lies outside the mesh. `searchtri' is a */
- /* handle whose primary edge the point is to the right of. This might */
- /* occur when the circumcenter of a triangle falls just slightly outside */
- /* the mesh due to floating-point roundoff error. It also occurs when */
- /* seeking a hole or region point that a foolish user has placed outside */
- /* the mesh. */
- /* */
- /* WARNING: This routine is designed for convex triangulations, and will */
- /* not generally work after the holes and concavities have been carved. */
- /* However, it can still be used to find the circumcenter of a triangle, as */
- /* long as the search is begun from the triangle in question. */
- /* */
- /*****************************************************************************/
-
- enum locateresult preciselocate(point searchpoint,
- struct triedge *searchtri)
- {
- struct triedge backtracktri;
- point forg, fdest, fapex;
- point swappoint;
- double orgorient, destorient;
- int moveleft;
- triangle ptr; /* Temporary variable used by sym(). */
-
- /* Where are we? */
- org(*searchtri, forg);
- dest(*searchtri, fdest);
- apex(*searchtri, fapex);
- while (1) {
- /* Check whether the apex is the point we seek. */
- if ((fapex[0] == searchpoint[0]) && (fapex[1] == searchpoint[1])) {
- lprevself(*searchtri);
- return ONVERTEX;
- }
- /* Does the point lie on the other side of the line defined by the */
- /* triangle edge opposite the triangle's destination? */
- destorient = counterclockwise(forg, fapex, searchpoint);
- /* Does the point lie on the other side of the line defined by the */
- /* triangle edge opposite the triangle's origin? */
- orgorient = counterclockwise(fapex, fdest, searchpoint);
- if (destorient > 0.0) {
- if (orgorient > 0.0) {
- /* Move left if the inner product of (fapex - searchpoint) and */
- /* (fdest - forg) is positive. This is equivalent to drawing */
- /* a line perpendicular to the line (forg, fdest) passing */
- /* through `fapex', and determining which side of this line */
- /* `searchpoint' falls on. */
- moveleft = (fapex[0] - searchpoint[0]) * (fdest[0] - forg[0]) +
- (fapex[1] - searchpoint[1]) * (fdest[1] - forg[1]) > 0.0;
- } else {
- moveleft = 1;
- }
- } else {
- if (orgorient > 0.0) {
- moveleft = 0;
- } else {
- /* The point we seek must be on the boundary of or inside this */
- /* triangle. */
- if (destorient == 0.0) {
- lprevself(*searchtri);
- return ONEDGE;
- }
- if (orgorient == 0.0) {
- lnextself(*searchtri);
- return ONEDGE;
- }
- return INTRIANGLE;
- }
- }
-
- /* Move to another triangle. Leave a trace `backtracktri' in case */
- /* floating-point roundoff or some such bogey causes us to walk */
- /* off a boundary of the triangulation. We can just bounce off */
- /* the boundary as if it were an elastic band. */
- if (moveleft) {
- lprev(*searchtri, backtracktri);
- fdest = fapex;
- } else {
- lnext(*searchtri, backtracktri);
- forg = fapex;
- }
- sym(backtracktri, *searchtri);
-
- /* Check for walking off the edge. */
- if (searchtri->tri == dummytri) {
- /* Turn around. */
- triedgecopy(backtracktri, *searchtri);
- swappoint = forg;
- forg = fdest;
- fdest = swappoint;
- apex(*searchtri, fapex);
- /* Check if the point really is beyond the triangulation boundary. */
- destorient = counterclockwise(forg, fapex, searchpoint);
- orgorient = counterclockwise(fapex, fdest, searchpoint);
- if ((orgorient < 0.0) && (destorient < 0.0)) {
- return OUTSIDE;
- }
- } else {
- apex(*searchtri, fapex);
- }
- }
- }
-
- /*****************************************************************************/
- /* */
- /* locate() Find a triangle or edge containing a given point. */
- /* */
- /* Searching begins from one of: the input `searchtri', a recently */
- /* encountered triangle `recenttri', or from a triangle chosen from a */
- /* random sample. The choice is made by determining which triangle's */
- /* origin is closest to the point we are searcing for. Normally, */
- /* `searchtri' should be a handle on the convex hull of the triangulation. */
- /* */
- /* Details on the random sampling method can be found in the Mucke, Saias, */
- /* and Zhu paper cited in the header of this code. */
- /* */
- /* On completion, `searchtri' is a triangle that contains `searchpoint'. */
- /* */
- /* Returns ONVERTEX if the point lies on an existing vertex. `searchtri' */
- /* is a handle whose origin is the existing vertex. */
- /* */
- /* Returns ONEDGE if the point lies on a mesh edge. `searchtri' is a */
- /* handle whose primary edge is the edge on which the point lies. */
- /* */
- /* Returns INTRIANGLE if the point lies strictly within a triangle. */
- /* `searchtri' is a handle on the triangle that contains the point. */
- /* */
- /* Returns OUTSIDE if the point lies outside the mesh. `searchtri' is a */
- /* handle whose primary edge the point is to the right of. This might */
- /* occur when the circumcenter of a triangle falls just slightly outside */
- /* the mesh due to floating-point roundoff error. It also occurs when */
- /* seeking a hole or region point that a foolish user has placed outside */
- /* the mesh. */
- /* */
- /* WARNING: This routine is designed for convex triangulations, and will */
- /* not generally work after the holes and concavities have been carved. */
- /* */
- /*****************************************************************************/
-
- enum locateresult locate(point searchpoint, struct triedge *searchtri)
- {
- void **sampleblock;
- triangle *firsttri;
- struct triedge sampletri;
- point torg, tdest;
- unsigned long alignptr;
- double searchdist, dist;
- double ahead;
- long sampleblocks, samplesperblock, samplenum;
- long triblocks;
- long i, j;
- triangle ptr; /* Temporary variable used by sym(). */
-
- /* Record the distance from the suggested starting triangle to the */
- /* point we seek. */
- org(*searchtri, torg);
- searchdist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0])
- + (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
-
- /* If a recently encountered triangle has been recorded and has not been */
- /* deallocated, test it as a good starting point. */
- if (recenttri.tri != (triangle *) NULL) {
- if (recenttri.tri[3] != (triangle) NULL) {
- org(recenttri, torg);
- if ((torg[0] == searchpoint[0]) && (torg[1] == searchpoint[1])) {
- triedgecopy(recenttri, *searchtri);
- return ONVERTEX;
- }
- dist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0])
- + (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
- if (dist < searchdist) {
- triedgecopy(recenttri, *searchtri);
- searchdist = dist;
- }
- }
- }
-
- /* The number of random samples taken is proportional to the cube root of */
- /* the number of triangles in the mesh. The next bit of code assumes */
- /* that the number of triangles increases monotonically. */
- while (SAMPLEFACTOR * samples * samples * samples < triangles.items) {
- samples++;
- }
- triblocks = (triangles.maxitems + TRIPERBLOCK - 1) / TRIPERBLOCK;
- samplesperblock = 1 + (samples / triblocks);
- sampleblocks = samples / samplesperblock;
- sampleblock = triangles.firstblock;
- sampletri.orient = 0;
- for (i = 0; i < sampleblocks; i++) {
- alignptr = (unsigned long) (sampleblock + 1);
- firsttri = (triangle *) (alignptr + (unsigned long) triangles.alignbytes
- - (alignptr % (unsigned long) triangles.alignbytes));
- for (j = 0; j < samplesperblock; j++) {
- if (i == triblocks - 1) {
- samplenum = randomnation((int)
- (triangles.maxitems - (i * TRIPERBLOCK)));
- } else {
- samplenum = randomnation(TRIPERBLOCK);
- }
- sampletri.tri = (triangle *)
- (firsttri + (samplenum * triangles.itemwords));
- if (sampletri.tri[3] != (triangle) NULL) {
- org(sampletri, torg);
- dist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0])
- + (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
- if (dist < searchdist) {
- triedgecopy(sampletri, *searchtri);
- searchdist = dist;
- }
- }
- }
- sampleblock = (void **) *sampleblock;
- }
- /* Where are we? */
- org(*searchtri, torg);
- dest(*searchtri, tdest);
- /* Check the starting triangle's vertices. */
- if ((torg[0] == searchpoint[0]) && (torg[1] == searchpoint[1])) {
- return ONVERTEX;
- }
- if ((tdest[0] == searchpoint[0]) && (tdest[1] == searchpoint[1])) {
- lnextself(*searchtri);
- return ONVERTEX;
- }
- /* Orient `searchtri' to fit the preconditions of calling preciselocate(). */
- ahead = counterclockwise(torg, tdest, searchpoint);
- if (ahead < 0.0) {
- /* Turn around so that `searchpoint' is to the left of the */
- /* edge specified by `searchtri'. */
- symself(*searchtri);
- } else if (ahead == 0.0) {
- /* Check if `searchpoint' is between `torg' and `tdest'. */
- if (((torg[0] < searchpoint[0]) == (searchpoint[0] < tdest[0]))
- && ((torg[1] < searchpoint[1]) == (searchpoint[1] < tdest[1]))) {
- return ONEDGE;
- }
- }
- return preciselocate(searchpoint, searchtri);
- }
-
- /** **/
- /** **/
- /********* Point location routines end here *********/
-
- /********* Mesh transformation routines begin here *********/
- /** **/
- /** **/
-
- /*****************************************************************************/
- /* */
- /* insertshelle() Create a new shell edge and insert it between two */
- /* triangles. */
- /* */
- /* The new shell edge is inserted at the edge described by the handle */
- /* `tri'. Its vertices are properly initialized. The marker `shellemark' */
- /* is applied to the shell edge and, if appropriate, its vertices. */
- /* */
- /*****************************************************************************/
-
- void insertshelle(
- struct triedge *tri, /* Edge at which to insert the new shell edge. */
- int shellemark) /* Marker for the new shell edge. */
- {
- struct triedge oppotri;
- struct edge newshelle;
- point triorg, tridest;
- triangle ptr; /* Temporary variable used by sym(). */
- shelle sptr; /* Temporary variable used by tspivot(). */
-
- /* Mark points if possible. */
- org(*tri, triorg);
- dest(*tri, tridest);
- if (pointmark(triorg) == 0) {
- setpointmark(triorg, shellemark);
- }
- if (pointmark(tridest) == 0) {
- setpointmark(tridest, shellemark);
- }
- /* Check if there's already a shell edge here. */
- tspivot(*tri, newshelle);
- if (newshelle.sh == dummysh) {
- /* Make new shell edge and initialize its vertices. */
- makeshelle(&newshelle);
- setsorg(newshelle, tridest);
- setsdest(newshelle, triorg);
- /* Bond new shell edge to the two triangles it is sandwiched between. */
- /* Note that the facing triangle `oppotri' might be equal to */
- /* `dummytri' (outer space), but the new shell edge is bonded to it */
- /* all the same. */
- tsbond(*tri, newshelle);
- sym(*tri, oppotri);
- ssymself(newshelle);
- tsbond(oppotri, newshelle);
- setmark(newshelle, shellemark);
- } else {
- if (mark(newshelle) == 0) {
- setmark(newshelle, shellemark);
- }
- }
- }
-
- /*****************************************************************************/
- /* */
- /* Terminology */
- /* */
- /* A "local transformation" replaces a small set of triangles with another */
- /* set of triangles. This may or may not involve inserting or deleting a */
- /* point. */
- /* */
- /* The term "casing" is used to describe the set of triangles that are */
- /* attached to the triangles being transformed, but are not transformed */
- /* themselves. Think of the casing as a fixed hollow structure inside */
- /* which all the action happens. A "casing" is only defined relative to */
- /* a single transformation; each occurrence of a transformation will */
- /* involve a different casing. */
- /* */
- /* A "shell" is similar to a "casing". The term "shell" describes the set */
- /* of shell edges (if any) that are attached to the triangles being */
- /* transformed. However, I sometimes use "shell" to refer to a single */
- /* shell edge, so don't get confused. */
- /* */
- /*****************************************************************************/
-
- /*****************************************************************************/
- /* */
- /* flip() Transform two triangles to two different triangles by flipping */
- /* an edge within a quadrilateral. */
- /* */
- /* Imagine the original triangles, abc and bad, oriented so that the */
- /* shared edge ab lies in a horizontal plane, with the point b on the left */
- /* and the point a on the right. The point c lies below the edge, and the */
- /* point d lies above the edge. The `flipedge' handle holds the edge ab */
- /* of triangle abc, and is directed left, from vertex a to vertex b. */
- /* */
- /* The triangles abc and bad are deleted and replaced by the triangles cdb */
- /* and dca. The triangles that represent abc and bad are NOT deallocated; */
- /* they are reused for dca and cdb, respectively. Hence, any handles that */
- /* may have held the original triangles are still valid, although not */
- /* directed as they were before. */
- /* */
- /* Upon completion of this routine, the `flipedge' handle holds the edge */
- /* dc of triangle dca, and is directed down, from vertex d to vertex c. */
- /* (Hence, the two triangles have rotated counterclockwise.) */
- /* */
- /* WARNING: This transformation is geometrically valid only if the */
- /* quadrilateral adbc is convex. Furthermore, this transformation is */
- /* valid only if there is not a shell edge between the triangles abc and */
- /* bad. This routine does not check either of these preconditions, and */
- /* it is the responsibility of the calling routine to ensure that they are */
- /* met. If they are not, the streets shall be filled with wailing and */
- /* gnashing of teeth. */
- /* */
- /*****************************************************************************/
-
- void flip(
- struct triedge *flipedge) /* Handle for the triangle abc. */
- {
- struct triedge botleft, botright;
- struct triedge topleft, topright;
- struct triedge top;
- struct triedge botlcasing, botrcasing;
- struct triedge toplcasing, toprcasing;
- struct edge botlshelle, botrshelle;
- struct edge toplshelle, toprshelle;
- point leftpoint, rightpoint, botpoint;
- point farpoint;
- triangle ptr; /* Temporary variable used by sym(). */
- shelle sptr; /* Temporary variable used by tspivot(). */
-
- /* Identify the vertices of the quadrilateral. */
- org(*flipedge, rightpoint);
- dest(*flipedge, leftpoint);
- apex(*flipedge, botpoint);
- sym(*flipedge, top);
- apex(top, farpoint);
-
- /* Identify the casing of the quadrilateral. */
- lprev(top, topleft);
- sym(topleft, toplcasing);
- lnext(top, topright);
- sym(topright, toprcasing);
- lnext(*flipedge, botleft);
- sym(botleft, botlcasing);
- lprev(*flipedge, botright);
- sym(botright, botrcasing);
- /* Rotate the quadrilateral one-quarter turn counterclockwise. */
- bond(topleft, botlcasing);
- bond(botleft, botrcasing);
- bond(botright, toprcasing);
- bond(topright, toplcasing);
-
- if (checksegments) {
- /* Check for shell edges and rebond them to the quadrilateral. */
- tspivot(topleft, toplshelle);
- tspivot(botleft, botlshelle);
- tspivot(botright, botrshelle);
- tspivot(topright, toprshelle);
- if (toplshelle.sh == dummysh) {
- tsdissolve(topright);
- } else {
- tsbond(topright, toplshelle);
- }
- if (botlshelle.sh == dummysh) {
- tsdissolve(topleft);
- } else {
- tsbond(topleft, botlshelle);
- }
- if (botrshelle.sh == dummysh) {
- tsdissolve(botleft);
- } else {
- tsbond(botleft, botrshelle);
- }
- if (toprshelle.sh == dummysh) {
- tsdissolve(botright);
- } else {
- tsbond(botright, toprshelle);
- }
- }
-
- /* New point assignments for the rotated quadrilateral. */
- setorg(*flipedge, farpoint);
- setdest(*flipedge, botpoint);
- setapex(*flipedge, rightpoint);
- setorg(top, botpoint);
- setdest(top, farpoint);
- setapex(top, leftpoint);
- }
-
- /*****************************************************************************/
- /* */
- /* insertsite() Insert a vertex into a Delaunay triangulation, */
- /* performing flips as necessary to maintain the Delaunay */
- /* property. */
- /* */
- /* The point `insertpoint' is located. If `searchtri.tri' is not NULL, */
- /* the search for the containing triangle begins from `searchtri'. If */
- /* `searchtri.tri' is NULL, a full point location procedure is called. */
- /* If `insertpoint' is found inside a triangle, the triangle is split into */
- /* three; if `insertpoint' lies on an edge, the edge is split in two, */
- /* thereby splitting the two adjacent triangles into four. Edge flips are */
- /* used to restore the Delaunay property. If `insertpoint' lies on an */
- /* existing vertex, no action is taken, and the value DUPLICATEPOINT is */
- /* returned. On return, `searchtri' is set to a handle whose origin is the */
- /* existing vertex. */
- /* */
- /* Normally, the parameter `splitedge' is set to NULL, implying that no */
- /* segment should be split. In this case, if `insertpoint' is found to */
- /* lie on a segment, no action is taken, and the value VIOLATINGPOINT is */
- /* returned. On return, `searchtri' is set to a handle whose primary edge */
- /* is the violated segment. */
- /* */
- /* If the calling routine wishes to split a segment by inserting a point in */
- /* it, the parameter `splitedge' should be that segment. In this case, */
- /* `searchtri' MUST be the triangle handle reached by pivoting from that */
- /* segment; no point location is done. */
- /* */
- /* `segmentflaws' and `triflaws' are flags that indicate whether or not */
- /* there should be checks for the creation of encroached segments or bad */
- /* quality faces. If a newly inserted point encroaches upon segments, */
- /* these segments are added to the list of segments to be split if */
- /* `segmentflaws' is set. If bad triangles are created, these are added */
- /* to the queue if `triflaws' is set. */
- /* */
- /* If a duplicate point or violated segment does not prevent the point */
- /* from being inserted, the return value will be ENCROACHINGPOINT if the */
- /* point encroaches upon a segment (and checking is enabled), or */
- /* SUCCESSFULPOINT otherwise. In either case, `searchtri' is set to a */
- /* handle whose origin is the newly inserted vertex. */
- /* */
- /* insertsite() does not use flip() for reasons of speed; some */
- /* information can be reused from edge flip to edge flip, like the */
- /* locations of shell edges. */
- /* */
- /*****************************************************************************/
-
- enum insertsiteresult insertsite(
- point insertpoint,
- struct triedge *searchtri,
- struct edge *splitedge,
- int segmentflaws,
- int triflaws)
- {
- struct triedge horiz;
- struct triedge top;
- struct triedge botleft, botright;
- struct triedge topleft, topright;
- struct triedge newbotleft, newbotright;
- struct triedge newtopright;
- struct triedge botlcasing, botrcasing;
- struct triedge toplcasing, toprcasing;
- struct triedge testtri;
- struct edge botlshelle, botrshelle;
- struct edge toplshelle, toprshelle;
- struct edge brokenshelle;
- struct edge checkshelle;
- struct edge rightedge;
- struct edge newedge;
- struct edge *encroached;
- point first;
- point leftpoint, rightpoint, botpoint, toppoint, farpoint;
- double attrib;
- enum insertsiteresult success;
- enum locateresult intersect;
- int doflip;
- int mirrorflag;
- int i;
- triangle ptr; /* Temporary variable used by sym(). */
- shelle sptr; /* Temporary variable used by spivot() and tspivot(). */
-
- if (splitedge == (struct edge *) NULL) {
- /* Find the location of the point to be inserted. Check if a good */
- /* starting triangle has already been provided by the caller. */
- if (searchtri->tri == (triangle *) NULL) {
- /* Find a boundary triangle. */
- horiz.tri = dummytri;
- horiz.orient = 0;
- symself(horiz);
- /* Search for a triangle containing `insertpoint'. */
- intersect = locate(insertpoint, &horiz);
- } else {
- /* Start searching from the triangle provided by the caller. */
- triedgecopy(*searchtri, horiz);
- intersect = preciselocate(insertpoint, &horiz);
- }
- } else {
- /* The calling routine provides the edge in which the point is inserted. */
- triedgecopy(*searchtri, horiz);
- intersect = ONEDGE;
- }
- if (intersect == ONVERTEX) {
- /* There's already a vertex there. Return in `searchtri' a triangle */
- /* whose origin is the existing vertex. */
- triedgecopy(horiz, *searchtri);
- triedgecopy(horiz, recenttri);
- return DUPLICATEPOINT;
- }
- if ((intersect == ONEDGE) || (intersect == OUTSIDE)) {
- /* The vertex falls on an edge or boundary. */
- if (checksegments && (splitedge == (struct edge *) NULL)) {
- /* Check whether the vertex falls on a shell edge. */
- tspivot(horiz, brokenshelle);
- if (brokenshelle.sh != dummysh) {
- /* The vertex falls on a shell edge. */
- if (segmentflaws) {
- /* Add the shell edge to the list of encroached segments. */
- encroached = (struct edge *) poolalloc(&badsegments);
- shellecopy(brokenshelle, *encroached);
- }
- /* Return a handle whose primary edge contains the point, */
- /* which has not been inserted. */
- triedgecopy(horiz, *searchtri);
- triedgecopy(horiz, recenttri);
- return VIOLATINGPOINT;
- }
- }
- /* Insert the point on an edge, dividing one triangle into two (if */
- /* the edge lies on a boundary) or two triangles into four. */
- lprev(horiz, botright);
- sym(botright, botrcasing);
- sym(horiz, topright);
- /* Is there a second triangle? (Or does this edge lie on a boundary?) */
- mirrorflag = topright.tri != dummytri;
- if (mirrorflag) {
- lnextself(topright);
- sym(topright, toprcasing);
- maketriangle(&newtopright);
- } else {
- /* Splitting the boundary edge increases the number of boundary edges. */
- hullsize++;
- }
- maketriangle(&newbotright);
-
- /* Set the vertices of changed and new triangles. */
- org(horiz, rightpoint);
- dest(horiz, leftpoint);
- apex(horiz, botpoint);
- setorg(newbotright, botpoint);
- setdest(newbotright, rightpoint);
- setapex(newbotright, insertpoint);
- setorg(horiz, insertpoint);
- for (i = 0; i < eextras; i++) {
- /* Set the element attributes of a new triangle. */
- setelemattribute(newbotright, i, elemattribute(botright, i));
- }
- if (mirrorflag) {
- dest(topright, toppoint);
- setorg(newtopright, rightpoint);
- setdest(newtopright, toppoint);
- setapex(newtopright, insertpoint);
- setorg(topright, insertpoint);
- for (i = 0; i < eextras; i++) {
- /* Set the element attributes of another new triangle. */
- setelemattribute(newtopright, i, elemattribute(topright, i));
- }
- }
-
- /* There may be shell edges that need to be bonded */
- /* to the new triangle(s). */
- if (checksegments) {
- tspivot(botright, botrshelle);
- if (botrshelle.sh != dummysh) {
- tsdissolve(botright);
- tsbond(newbotright, botrshelle);
- }
- if (mirrorflag) {
- tspivot(topright, toprshelle);
- if (toprshelle.sh != dummysh) {
- tsdissolve(topright);
- tsbond(newtopright, toprshelle);
- }
- }
- }
-
- /* Bond the new triangle(s) to the surrounding triangles. */
- bond(newbotright, botrcasing);
- lprevself(newbotright);
- bond(newbotright, botright);
- lprevself(newbotright);
- if (mirrorflag) {
- bond(newtopright, toprcasing);
- lnextself(newtopright);
- bond(newtopright, topright);
- lnextself(newtopright);
- bond(newtopright, newbotright);
- }
-
- if (splitedge != (struct edge *) NULL) {
- /* Split the shell edge into two. */
- setsdest(*splitedge, insertpoint);
- ssymself(*splitedge);
- spivot(*splitedge, rightedge);
- insertshelle(&newbotright, mark(*splitedge));
- tspivot(newbotright, newedge);
- sbond(*splitedge, newedge);
- ssymself(newedge);
- sbond(newedge, rightedge);
- ssymself(*splitedge);
- }
-
- /* Position `horiz' on the first edge to check for */
- /* the Delaunay property. */
- lnextself(horiz);
- } else {
- /* Insert the point in a triangle, splitting it into three. */
- lnext(horiz, botleft);
- lprev(horiz, botright);
- sym(botleft, botlcasing);
- sym(botright, botrcasing);
- maketriangle(&newbotleft);
- maketriangle(&newbotright);
-
- /* Set the vertices of changed and new triangles. */
- org(horiz, rightpoint);
- dest(horiz, leftpoint);
- apex(horiz, botpoint);
- setorg(newbotleft, leftpoint);
- setdest(newbotleft, botpoint);
- setapex(newbotleft, insertpoint);
- setorg(newbotright, botpoint);
- setdest(newbotright, rightpoint);
- setapex(newbotright, insertpoint);
- setapex(horiz, insertpoint);
- for (i = 0; i < eextras; i++) {
- /* Set the element attributes of the new triangles. */
- attrib = elemattribute(horiz, i);
- setelemattribute(newbotleft, i, attrib);
- setelemattribute(newbotright, i, attrib);
- }
-
- /* There may be shell edges that need to be bonded */
- /* to the new triangles. */
- if (checksegments) {
- tspivot(botleft, botlshelle);
- if (botlshelle.sh != dummysh) {
- tsdissolve(botleft);
- tsbond(newbotleft, botlshelle);
- }
- tspivot(botright, botrshelle);
- if (botrshelle.sh != dummysh) {
- tsdissolve(botright);
- tsbond(newbotright, botrshelle);
- }
- }
-
- /* Bond the new triangles to the surrounding triangles. */
- bond(newbotleft, botlcasing);
- bond(newbotright, botrcasing);
- lnextself(newbotleft);
- lprevself(newbotright);
- bond(newbotleft, newbotright);
- lnextself(newbotleft);
- bond(botleft, newbotleft);
- lprevself(newbotright);
- bond(botright, newbotright);
-
- }
-
- /* The insertion is successful by default, unless an encroached */
- /* edge is found. */
- success = SUCCESSFULPOINT;
- /* Circle around the newly inserted vertex, checking each edge opposite */
- /* it for the Delaunay property. Non-Delaunay edges are flipped. */
- /* `horiz' is always the edge being checked. `first' marks where to */
- /* stop circling. */
- org(horiz, first);
- rightpoint = first;
- dest(horiz, leftpoint);
- /* Circle until finished. */
- while (1) {
- /* By default, the edge will be flipped. */
- doflip = 1;
- if (checksegments) {
- /* Check for a segment, which cannot be flipped. */
- tspivot(horiz, checkshelle);
- if (checkshelle.sh != dummysh) {
- /* The edge is a segment and cannot be flipped. */
- doflip = 0;
- }
- }
- if (doflip) {
- /* Check if the edge is a boundary edge. */
- sym(horiz, top);
- if (top.tri == dummytri) {
- /* The edge is a boundary edge and cannot be flipped. */
- doflip = 0;
- } else {
- /* Find the point on the other side of the edge. */
- apex(top, farpoint);
- /* In the incremental Delaunay triangulation algorithm, any of */
- /* `leftpoint', `rightpoint', and `farpoint' could be vertices */
- /* of the triangular bounding box. These vertices must be */
- /* treated as if they are infinitely distant, even though their */
- /* "coordinates" are not. */
- if ((leftpoint == infpoint1) || (leftpoint == infpoint2)
- || (leftpoint == infpoint3)) {
- /* `leftpoint' is infinitely distant. Check the convexity of */
- /* the boundary of the triangulation. 'farpoint' might be */
- /* infinite as well, but trust me, this same condition */
- /* should be applied. */
- doflip = counterclockwise(insertpoint, rightpoint, farpoint) > 0.0;
- } else if ((rightpoint == infpoint1) || (rightpoint == infpoint2)
- || (rightpoint == infpoint3)) {
- /* `rightpoint' is infinitely distant. Check the convexity of */
- /* the boundary of the triangulation. 'farpoint' might be */
- /* infinite as well, but trust me, this same condition */
- /* should be applied. */
- doflip = counterclockwise(farpoint, leftpoint, insertpoint) > 0.0;
- } else if ((farpoint == infpoint1) || (farpoint == infpoint2)
- || (farpoint == infpoint3)) {
- /* `farpoint' is infinitely distant and cannot be inside */
- /* the circumcircle of the triangle `horiz'. */
- doflip = 0;
- } else {
- /* Test whether the edge is locally Delaunay. */
- doflip = incircle(leftpoint, insertpoint, rightpoint, farpoint)
- > 0.0;
- }
- if (doflip) {
- /* We made it! Flip the edge `horiz' by rotating its containing */
- /* quadrilateral (the two triangles adjacent to `horiz'). */
- /* Identify the casing of the quadrilateral. */
- lprev(top, topleft);
- sym(topleft, toplcasing);
- lnext(top, topright);
- sym(topright, toprcasing);
- lnext(horiz, botleft);
- sym(botleft, botlcasing);
- lprev(horiz, botright);
- sym(botright, botrcasing);
- /* Rotate the quadrilateral one-quarter turn counterclockwise. */
- bond(topleft, botlcasing);
- bond(botleft, botrcasing);
- bond(botright, toprcasing);
- bond(topright, toplcasing);
- if (checksegments) {
- /* Check for shell edges and rebond them to the quadrilateral. */
- tspivot(topleft, toplshelle);
- tspivot(botleft, botlshelle);
- tspivot(botright, botrshelle);
- tspivot(topright, toprshelle);
- if (toplshelle.sh == dummysh) {
- tsdissolve(topright);
- } else {
- tsbond(topright, toplshelle);
- }
- if (botlshelle.sh == dummysh) {
- tsdissolve(topleft);
- } else {
- tsbond(topleft, botlshelle);
- }
- if (botrshelle.sh == dummysh) {
- tsdissolve(botleft);
- } else {
- tsbond(botleft, botrshelle);
- }
- if (toprshelle.sh == dummysh) {
- tsdissolve(botright);
- } else {
- tsbond(botright, toprshelle);
- }
- }
- /* New point assignments for the rotated quadrilateral. */
- setorg(horiz, farpoint);
- setdest(horiz, insertpoint);
- setapex(horiz, rightpoint);
- setorg(top, insertpoint);
- setdest(top, farpoint);
- setapex(top, leftpoint);
- for (i = 0; i < eextras; i++) {
- /* Take the average of the two triangles' attributes. */
- attrib = 0.5 * (elemattribute(top, i) + elemattribute(horiz, i));
- setelemattribute(top, i, attrib);
- setelemattribute(horiz, i, attrib);
- }
- /* On the next iterations, consider the two edges that were */
- /* exposed (this is, are now visible to the newly inserted */
- /* point) by the edge flip. */
- lprevself(horiz);
- leftpoint = farpoint;
- }
- }
- }
- if (!doflip) {
- /* The handle `horiz' is accepted as locally Delaunay. */
- /* Look for the next edge around the newly inserted point. */
- lnextself(horiz);
- sym(horiz, testtri);
- /* Check for finishing a complete revolution about the new point, or */
- /* falling off the edge of the triangulation. The latter will */
- /* happen when a point is inserted at a boundary. */
- if ((leftpoint == first) || (testtri.tri == dummytri)) {
- /* We're done. Return a triangle whose origin is the new point. */
- lnext(horiz, *searchtri);
- lnext(horiz, recenttri);
- return success;
- }
- /* Finish finding the next edge around the newly inserted point. */
- lnext(testtri, horiz);
- rightpoint = leftpoint;
- dest(horiz, leftpoint);
- }
- }
- }
-
- /*****************************************************************************/
- /* */
- /* triangulatepolygon() Find the Delaunay triangulation of a polygon that */
- /* has a certain "nice" shape. This includes the */
- /* polygons that result from deletion of a point or */
- /* insertion of a segment. */
- /* */
- /* This is a conceptually difficult routine. The starting assumption is */
- /* that we have a polygon with n sides. n - 1 of these sides are currently */
- /* represented as edges in the mesh. One side, called the "base", need not */
- /* be. */
- /* */
- /* Inside the polygon is a structure I call a "fan", consisting of n - 1 */
- /* triangles that share a common origin. For each of these triangles, the */
- /* edge opposite the origin is one of the sides of the polygon. The */
- /* primary edge of each triangle is the edge directed from the origin to */
- /* the destination; note that this is not the same edge that is a side of */
- /* the polygon. `firstedge' is the primary edge of the first triangle. */
- /* From there, the triangles follow in counterclockwise order about the */
- /* polygon, until `lastedge', the primary edge of the last triangle. */
- /* `firstedge' and `lastedge' are probably connected to other triangles */
- /* beyond the extremes of the fan, but their identity is not important, as */
- /* long as the fan remains connected to them. */
- /* */
- /* Imagine the polygon oriented so that its base is at the bottom. This */
- /* puts `firstedge' on the far right, and `lastedge' on the far left. */
- /* The right vertex of the base is the destination of `firstedge', and the */
- /* left vertex of the base is the apex of `lastedge'. */
- /* */
- /* The challenge now is to find the right sequence of edge flips to */
- /* transform the fan into a Delaunay triangulation of the polygon. Each */
- /* edge flip effectively removes one triangle from the fan, committing it */
- /* to the polygon. The resulting polygon has one fewer edge. If `doflip' */
- /* is set, the final flip will be performed, resulting in a fan of one */
- /* (useless?) triangle. If `doflip' is not set, the final flip is not */
- /* performed, resulting in a fan of two triangles, and an unfinished */
- /* triangular polygon that is not yet filled out with a single triangle. */
- /* On completion of the routine, `lastedge' is the last remaining triangle, */
- /* or the leftmost of the last two. */
- /* */
- /* Although the flips are performed in the order described above, the */
- /* decisions about what flips to perform are made in precisely the reverse */
- /* order. The recursive triangulatepolygon() procedure makes a decision, */
- /* uses up to two recursive calls to triangulate the "subproblems" */
- /* (polygons with fewer edges), and then performs an edge flip. */
- /* */
- /* The "decision" it makes is which vertex of the polygon should be */
- /* connected to the base. This decision is made by testing every possible */
- /* vertex. Once the best vertex is found, the two edges that connect this */
- /* vertex to the base become the bases for two smaller polygons. These */
- /* are triangulated recursively. Unfortunately, this approach can take */
- /* O(n^2) time not only in the worst case, but in many common cases. It's */
- /* rarely a big deal for point deletion, where n is rarely larger than ten, */
- /* but it could be a big deal for segment insertion, especially if there's */
- /* a lot of long segments that each cut many triangles. I ought to code */
- /* a faster algorithm some time. */
- /* */
- /* The `edgecount' parameter is the number of sides of the polygon, */
- /* including its base. `triflaws' is a flag that determines whether the */
- /* new triangles should be tested for quality, and enqueued if they are */
- /* bad. */
- /* */
- /*****************************************************************************/
-
- void triangulatepolygon(
- struct triedge *firstedge,
- struct triedge *lastedge,
- int edgecount,
- int doflip,
- int triflaws)
- {
- struct triedge testtri;
- struct triedge besttri;
- struct triedge tempedge;
- point leftbasepoint, rightbasepoint;
- point testpoint;
- point bestpoint;
- int bestnumber;
- int i;
- triangle ptr; /* Temporary variable used by sym(), onext(), and oprev(). */
-
- /* Identify the base vertices. */
- apex(*lastedge, leftbasepoint);
- dest(*firstedge, rightbasepoint);
- /* Find the best vertex to connect the base to. */
- onext(*firstedge, besttri);
- dest(besttri, bestpoint);
- triedgecopy(besttri, testtri);
- bestnumber = 1;
- for (i = 2; i <= edgecount - 2; i++) {
- onextself(testtri);
- dest(testtri, testpoint);
- /* Is this a better vertex? */
- if (incircle(leftbasepoint, rightbasepoint, bestpoint, testpoint) > 0.0) {
- triedgecopy(testtri, besttri);
- bestpoint = testpoint;
- bestnumber = i;
- }
- }
- if (bestnumber > 1) {
- /* Recursively triangulate the smaller polygon on the right. */
- oprev(besttri, tempedge);
- triangulatepolygon(firstedge, &tempedge, bestnumber + 1, 1, triflaws);
- }
- if (bestnumber < edgecount - 2) {
- /* Recursively triangulate the smaller polygon on the left. */
- sym(besttri, tempedge);
- triangulatepolygon(&besttri, lastedge, edgecount - bestnumber, 1,
- triflaws);
- /* Find `besttri' again; it may have been lost to edge flips. */
- sym(tempedge, besttri);
- }
- if (doflip) {
- /* Do one final edge flip. */
- flip(&besttri);
- }
- /* Return the base triangle. */
- triedgecopy(besttri, *lastedge);
- }
-
-
- /** **/
- /** **/
- /********* Mesh transformation routines end here *********/
-
- /********* Divide-and-conquer Delaunay triangulation begins here *********/
- /** **/
- /** **/
-
- /*****************************************************************************/
- /* */
- /* The divide-and-conquer bounding box */
- /* */
- /* I originally implemented the divide-and-conquer and incremental Delaunay */
- /* triangulations using the edge-based data structure presented by Guibas */
- /* and Stolfi. Switching to a triangle-based data structure doubled the */
- /* speed. However, I had to think of a few extra tricks to maintain the */
- /* elegance of the original algorithms. */
- /* */
- /* The "bounding box" used by my variant of the divide-and-conquer */
- /* algorithm uses one triangle for each edge of the convex hull of the */
- /* triangulation. These bounding triangles all share a common apical */
- /* vertex, which is represented by NULL and which represents nothing. */
- /* The bounding triangles are linked in a circular fan about this NULL */
- /* vertex, and the edges on the convex hull of the triangulation appear */
- /* opposite the NULL vertex. You might find it easiest to imagine that */
- /* the NULL vertex is a point in 3D space behind the center of the */
- /* triangulation, and that the bounding triangles form a sort of cone. */
- /* */
- /* This bounding box makes it easy to represent degenerate cases. For */
- /* instance, the triangulation of two vertices is a single edge. This edge */
- /* is represented by two bounding box triangles, one on each "side" of the */
- /* edge. These triangles are also linked together in a fan about the NULL */
- /* vertex. */
- /* */
- /* The bounding box also makes it easy to traverse the convex hull, as the */
- /* divide-and-conquer algorithm needs to do. */
- /* */
- /*****************************************************************************/
-
- /*****************************************************************************/
- /* */
- /* pointsort() Sort an array of points by x-coordinate, using the */
- /* y-coordinate as a secondary key. */
- /* */
- /* Uses quicksort. Randomized O(n log n) time. No, I did not make any of */
- /* the usual quicksort mistakes. */
- /* */
- /*****************************************************************************/
-
- void pointsort(
- point *sortarray,
- int arraysize)
- {
- int left, right;
- int pivot;
- double pivotx, pivoty;
- point temp;
-
- if (arraysize == 2) {
- /* Recursive base case. */
- if ((sortarray[0][0] > sortarray[1][0]) ||
- ((sortarray[0][0] == sortarray[1][0]) &&
- (sortarray[0][1] > sortarray[1][1]))) {
- temp = sortarray[1];
- sortarray[1] = sortarray[0];
- sortarray[0] = temp;
- }
- return;
- }
- /* Choose a random pivot to split the array. */
- pivot = (int) randomnation(arraysize);
- pivotx = sortarray[pivot][0];
- pivoty = sortarray[pivot][1];
- /* Split the array. */
- left = -1;
- right = arraysize;
- while (left < right) {
- /* Search for a point whose x-coordinate is too large for the left. */
- do {
- left++;
- } while ((left <= right) && ((sortarray[left][0] < pivotx) ||
- ((sortarray[left][0] == pivotx) &&
- (sortarray[left][1] < pivoty))));
- /* Search for a point whose x-coordinate is too small for the right. */
- do {
- right--;
- } while ((left <= right) && ((sortarray[right][0] > pivotx) ||
- ((sortarray[right][0] == pivotx) &&
- (sortarray[right][1] > pivoty))));
- if (left < right) {
- /* Swap the left and right points. */
- temp = sortarray[left];
- sortarray[left] = sortarray[right];
- sortarray[right] = temp;
- }
- }
- if (left > 1) {
- /* Recursively sort the left subset. */
- pointsort(sortarray, left);
- }
- if (right < arraysize - 2) {
- /* Recursively sort the right subset. */
- pointsort(&sortarray[right + 1], arraysize - right - 1);
- }
- }
-
- /*****************************************************************************/
- /* */
- /* pointmedian() An order statistic algorithm, almost. Shuffles an array */
- /* of points so that the first `median' points occur */
- /* lexicographically before the remaining points. */
- /* */
- /* Uses the x-coordinate as the primary key if axis == 0; the y-coordinate */
- /* if axis == 1. Very similar to the pointsort() procedure, but runs in */
- /* randomized linear time. */
- /* */
- /*****************************************************************************/
-
- void pointmedian(
- point *sortarray,
- int arraysize,
- int median,
- int axis)
- {
- int left, right;
- int pivot;
- double pivot1, pivot2;
- point temp;
-
- if (arraysize == 2) {
- /* Recursive base case. */
- if ((sortarray[0][axis] > sortarray[1][axis]) ||
- ((sortarray[0][axis] == sortarray[1][axis]) &&
- (sortarray[0][1 - axis] > sortarray[1][1 - axis]))) {
- temp = sortarray[1];
- sortarray[1] = sortarray[0];
- sortarray[0] = temp;
- }
- return;
- }
- /* Choose a random pivot to split the array. */
- pivot = (int) randomnation(arraysize);
- pivot1 = sortarray[pivot][axis];
- pivot2 = sortarray[pivot][1 - axis];
- /* Split the array. */
- left = -1;
- right = arraysize;
- while (left < right) {
- /* Search for a point whose x-coordinate is too large for the left. */
- do {
- left++;
- } while ((left <= right) && ((sortarray[left][axis] < pivot1) ||
- ((sortarray[left][axis] == pivot1) &&
- (sortarray[left][1 - axis] < pivot2))));
- /* Search for a point whose x-coordinate is too small for the right. */
- do {
- right--;
- } while ((left <= right) && ((sortarray[right][axis] > pivot1) ||
- ((sortarray[right][axis] == pivot1) &&
- (sortarray[right][1 - axis] > pivot2))));
- if (left < right) {
- /* Swap the left and right points. */
- temp = sortarray[left];
- sortarray[left] = sortarray[right];
- sortarray[right] = temp;
- }
- }
- /* Unlike in pointsort(), at most one of the following */
- /* conditionals is true. */
- if (left > median) {
- /* Recursively shuffle the left subset. */
- pointmedian(sortarray, left, median, axis);
- }
- if (right < median - 1) {
- /* Recursively shuffle the right subset. */
- pointmedian(&sortarray[right + 1], arraysize - right - 1,
- median - right - 1, axis);
- }
- }
-
- /*****************************************************************************/
- /* */
- /* alternateaxes() Sorts the points as appropriate for the divide-and- */
- /* conquer algorithm with alternating cuts. */
- /* */
- /* Partitions by x-coordinate if axis == 0; by y-coordinate if axis == 1. */
- /* For the base case, subsets containing only two or three points are */
- /* always sorted by x-coordinate. */
- /* */
- /*****************************************************************************/
-
- void alternateaxes(point *sortarray,
- int arraysize,
- int axis)
- {
- int divider;
-
- divider = arraysize >> 1;
- if (arraysize <= 3) {
- /* Recursive base case: subsets of two or three points will be */
- /* handled specially, and should always be sorted by x-coordinate. */
- axis = 0;
- }
- /* Partition with a horizontal or vertical cut. */
- pointmedian(sortarray, arraysize, divider, axis);
- /* Recursively partition the subsets with a cross cut. */
- if (arraysize - divider >= 2) {
- if (divider >= 2) {
- alternateaxes(sortarray, divider, 1 - axis);
- }
- alternateaxes(&sortarray[divider], arraysize - divider, 1 - axis);
- }
- }
-
- /*****************************************************************************/
- /* */
- /* mergehulls() Merge two adjacent Delaunay triangulations into a */
- /* single Delaunay triangulation. */
- /* */
- /* This is similar to the algorithm given by Guibas and Stolfi, but uses */
- /* a triangle-based, rather than edge-based, data structure. */
- /* */
- /* The algorithm walks up the gap between the two triangulations, knitting */
- /* them together. As they are merged, some of their bounding triangles */
- /* are converted into real triangles of the triangulation. The procedure */
- /* pulls each hull's bounding triangles apart, then knits them together */
- /* like the teeth of two gears. The Delaunay property determines, at each */
- /* step, whether the next "tooth" is a bounding triangle of the left hull */
- /* or the right. When a bounding triangle becomes real, its apex is */
- /* changed from NULL to a real point. */
- /* */
- /* Only two new triangles need to be allocated. These become new bounding */
- /* triangles at the top and bottom of the seam. They are used to connect */
- /* the remaining bounding triangles (those that have not been converted */
- /* into real triangles) into a single fan. */
- /* */
- /* On entry, `farleft' and `innerleft' are bounding triangles of the left */
- /* triangulation. The origin of `farleft' is the leftmost vertex, and */
- /* the destination of `innerleft' is the rightmost vertex of the */
- /* triangulation. Similarly, `innerright' and `farright' are bounding */
- /* triangles of the right triangulation. The origin of `innerright' and */
- /* destination of `farright' are the leftmost and rightmost vertices. */
- /* */
- /* On completion, the origin of `farleft' is the leftmost vertex of the */
- /* merged triangulation, and the destination of `farright' is the rightmost */
- /* vertex. */
- /* */
- /*****************************************************************************/
-
- void mergehulls(
- struct triedge *farleft,
- struct triedge *innerleft,
- struct triedge *innerright,
- struct triedge *farright,
- int axis)
- {
- struct triedge leftcand, rightcand;
- struct triedge baseedge;
- struct triedge nextedge;
- struct triedge sidecasing, topcasing, outercasing;
- struct triedge checkedge;
- point innerleftdest;
- point innerrightorg;
- point innerleftapex, innerrightapex;
- point farleftpt, farrightpt;
- point farleftapex, farrightapex;
- point lowerleft, lowerright;
- point upperleft, upperright;
- point nextapex;
- point checkvertex;
- int changemade;
- int badedge;
- int leftfinished, rightfinished;
- triangle ptr; /* Temporary variable used by sym(). */
-
- dest(*innerleft, innerleftdest);
- apex(*innerleft, innerleftapex);
- org(*innerright, innerrightorg);
- apex(*innerright, innerrightapex);
- /* Special treatment for horizontal cuts. */
- if (axis == 1) {
- org(*farleft, farleftpt);
- apex(*farleft, farleftapex);
- dest(*farright, farrightpt);
- apex(*farright, farrightapex);
- /* The pointers to the extremal points are shifted to point to the */
- /* topmost and bottommost point of each hull, rather than the */
- /* leftmost and rightmost points. */
- while (farleftapex[1] < farleftpt[1]) {
- lnextself(*farleft);
- symself(*farleft);
- farleftpt = farleftapex;
- apex(*farleft, farleftapex);
- }
- sym(*innerleft, checkedge);
- apex(checkedge, checkvertex);
- while (checkvertex[1] > innerleftdest[1]) {
- lnext(checkedge, *innerleft);
- innerleftapex = innerleftdest;
- innerleftdest = checkvertex;
- sym(*innerleft, checkedge);
- apex(checkedge, checkvertex);
- }
- while (innerrightapex[1] < innerrightorg[1]) {
- lnextself(*innerright);
- symself(*innerright);
- innerrightorg = innerrightapex;
- apex(*innerright, innerrightapex);
- }
- sym(*farright, checkedge);
- apex(checkedge, checkvertex);
- while (checkvertex[1] > farrightpt[1]) {
- lnext(checkedge, *farright);
- farrightapex = farrightpt;
- farrightpt = checkvertex;
- sym(*farright, checkedge);
- apex(checkedge, checkvertex);
- }
- }
- /* Find a line tangent to and below both hulls. */
- do {
- changemade = 0;
- /* Make innerleftdest the "bottommost" point of the left hull. */
- if (counterclockwise(innerleftdest, innerleftapex, innerrightorg) > 0.0) {
- lprevself(*innerleft);
- symself(*innerleft);
- innerleftdest = innerleftapex;
- apex(*innerleft, innerleftapex);
- changemade = 1;
- }
- /* Make innerrightorg the "bottommost" point of the right hull. */
- if (counterclockwise(innerrightapex, innerrightorg, innerleftdest) > 0.0) {
- lnextself(*innerright);
- symself(*innerright);
- innerrightorg = innerrightapex;
- apex(*innerright, innerrightapex);
- changemade = 1;
- }
- } while (changemade);
- /* Find the two candidates to be the next "gear tooth". */
- sym(*innerleft, leftcand);
- sym(*innerright, rightcand);
- /* Create the bottom new bounding triangle. */
- maketriangle(&baseedge);
- /* Connect it to the bounding boxes of the left and right triangulations. */
- bond(baseedge, *innerleft);
- lnextself(baseedge);
- bond(baseedge, *innerright);
- lnextself(baseedge);
- setorg(baseedge, innerrightorg);
- setdest(baseedge, innerleftdest);
- /* Apex is intentionally left NULL. */
- /* Fix the extreme triangles if necessary. */
- org(*farleft, farleftpt);
- if (innerleftdest == farleftpt) {
- lnext(baseedge, *farleft);
- }
- dest(*farright, farrightpt);
- if (innerrightorg == farrightpt) {
- lprev(baseedge, *farright);
- }
- /* The vertices of the current knitting edge. */
- lowerleft = innerleftdest;
- lowerright = innerrightorg;
- /* The candidate vertices for knitting. */
- apex(leftcand, upperleft);
- apex(rightcand, upperright);
- /* Walk up the gap between the two triangulations, knitting them together. */
- while (1) {
- /* Have we reached the top? (This isn't quite the right question, */
- /* because even though the left triangulation might seem finished now, */
- /* moving up on the right triangulation might reveal a new point of */
- /* the left triangulation. And vice-versa.) */
- leftfinished = counterclockwise(upperleft, lowerleft, lowerright) <= 0.0;
- rightfinished = counterclockwise(upperright, lowerleft, lowerright) <= 0.0;
- if (leftfinished && rightfinished) {
- /* Create the top new bounding triangle. */
- maketriangle(&nextedge);
- setorg(nextedge, lowerleft);
- setdest(nextedge, lowerright);
- /* Apex is intentionally left NULL. */
- /* Connect it to the bounding boxes of the two triangulations. */
- bond(nextedge, baseedge);
- lnextself(nextedge);
- bond(nextedge, rightcand);
- lnextself(nextedge);
- bond(nextedge, leftcand);
- /* Special treatment for horizontal cuts. */
- if (axis == 1) {
- org(*farleft, farleftpt);
- apex(*farleft, farleftapex);
- dest(*farright, farrightpt);
- apex(*farright, farrightapex);
- sym(*farleft, checkedge);
- apex(checkedge, checkvertex);
- /* The pointers to the extremal points are restored to the leftmost */
- /* and rightmost points (rather than topmost and bottommost). */
- while (checkvertex[0] < farleftpt[0]) {
- lprev(checkedge, *farleft);
- farleftapex = farleftpt;
- farleftpt = checkvertex;
- sym(*farleft, checkedge);
- apex(checkedge, checkvertex);
- }
- while (farrightapex[0] > farrightpt[0]) {
- lprevself(*farright);
- symself(*farright);
- farrightpt = farrightapex;
- apex(*farright, farrightapex);
- }
- }
- return;
- }
- /* Consider eliminating edges from the left triangulation. */
- if (!leftfinished) {
- /* What vertex would be exposed if an edge were deleted? */
- lprev(leftcand, nextedge);
- symself(nextedge);
- apex(nextedge, nextapex);
- /* If nextapex is NULL, then no vertex would be exposed; the */
- /* triangulation would have been eaten right through. */
- if (nextapex != (point) NULL) {
- /* Check whether the edge is Delaunay. */
- badedge = incircle(lowerleft, lowerright, upperleft, nextapex) > 0.0;
- while (badedge) {
- /* Eliminate the edge with an edge flip. As a result, the */
- /* left triangulation will have one more boundary triangle. */
- lnextself(nextedge);
- sym(nextedge, topcasing);
- lnextself(nextedge);
- sym(nextedge, sidecasing);
- bond(nextedge, topcasing);
- bond(leftcand, sidecasing);
- lnextself(leftcand);
- sym(leftcand, outercasing);
- lprevself(nextedge);
- bond(nextedge, outercasing);
- /* Correct the vertices to reflect the edge flip. */
- setorg(leftcand, lowerleft);
- setdest(leftcand, NULL);
- setapex(leftcand, nextapex);
- setorg(nextedge, NULL);
- setdest(nextedge, upperleft);
- setapex(nextedge, nextapex);
- /* Consider the newly exposed vertex. */
- upperleft = nextapex;
- /* What vertex would be exposed if another edge were deleted? */
- triedgecopy(sidecasing, nextedge);
- apex(nextedge, nextapex);
- if (nextapex != (point) NULL) {
- /* Check whether the edge is Delaunay. */
- badedge = incircle(lowerleft, lowerright, upperleft, nextapex)
- > 0.0;
- } else {
- /* Avoid eating right through the triangulation. */
- badedge = 0;
- }
- }
- }
- }
- /* Consider eliminating edges from the right triangulation. */
- if (!rightfinished) {
- /* What vertex would be exposed if an edge were deleted? */
- lnext(rightcand, nextedge);
- symself(nextedge);
- apex(nextedge, nextapex);
- /* If nextapex is NULL, then no vertex would be exposed; the */
- /* triangulation would have been eaten right through. */
- if (nextapex != (point) NULL) {
- /* Check whether the edge is Delaunay. */
- badedge = incircle(lowerleft, lowerright, upperright, nextapex) > 0.0;
- while (badedge) {
- /* Eliminate the edge with an edge flip. As a result, the */
- /* right triangulation will have one more boundary triangle. */
- lprevself(nextedge);
- sym(nextedge, topcasing);
- lprevself(nextedge);
- sym(nextedge, sidecasing);
- bond(nextedge, topcasing);
- bond(rightcand, sidecasing);
- lprevself(rightcand);
- sym(rightcand, outercasing);
- lnextself(nextedge);
- bond(nextedge, outercasing);
- /* Correct the vertices to reflect the edge flip. */
- setorg(rightcand, NULL);
- setdest(rightcand, lowerright);
- setapex(rightcand, nextapex);
- setorg(nextedge, upperright);
- setdest(nextedge, NULL);
- setapex(nextedge, nextapex);
- /* Consider the newly exposed vertex. */
- upperright = nextapex;
- /* What vertex would be exposed if another edge were deleted? */
- triedgecopy(sidecasing, nextedge);
- apex(nextedge, nextapex);
- if (nextapex != (point) NULL) {
- /* Check whether the edge is Delaunay. */
- badedge = incircle(lowerleft, lowerright, upperright, nextapex)
- > 0.0;
- } else {
- /* Avoid eating right through the triangulation. */
- badedge = 0;
- }
- }
- }
- }
- if (leftfinished || (!rightfinished &&
- (incircle(upperleft, lowerleft, lowerright, upperright) > 0.0))) {
- /* Knit the triangulations, adding an edge from `lowerleft' */
- /* to `upperright'. */
- bond(baseedge, rightcand);
- lprev(rightcand, baseedge);
- setdest(baseedge, lowerleft);
- lowerright = upperright;
- sym(baseedge, rightcand);
- apex(rightcand, upperright);
- } else {
- /* Knit the triangulations, adding an edge from `upperleft' */
- /* to `lowerright'. */
- bond(baseedge, leftcand);
- lnext(leftcand, baseedge);
- setorg(baseedge, lowerright);
- lowerleft = upperleft;
- sym(baseedge, leftcand);
- apex(leftcand, upperleft);
- }
- }
- }
-
- /*****************************************************************************/
- /* */
- /* divconqrecurse() Recursively form a Delaunay triangulation by the */
- /* divide-and-conquer method. */
- /* */
- /* Recursively breaks down the problem into smaller pieces, which are */
- /* knitted together by mergehulls(). The base cases (problems of two or */
- /* three points) are handled specially here. */
- /* */
- /* On completion, `farleft' and `farright' are bounding triangles such that */
- /* the origin of `farleft' is the leftmost vertex (breaking ties by */
- /* choosing the highest leftmost vertex), and the destination of */
- /* `farright' is the rightmost vertex (breaking ties by choosing the */
- /* lowest rightmost vertex). */
- /* */
- /*****************************************************************************/
-
- void divconqrecurse(
- point *sortarray,
- int vertices,
- int axis,
- struct triedge *farleft,
- struct triedge *farright)
- {
- struct triedge midtri, tri1, tri2, tri3;
- struct triedge innerleft, innerright;
- double area;
- int divider;
-
- if (vertices == 2) {
- /* The triangulation of two vertices is an edge. An edge is */
- /* represented by two bounding triangles. */
- maketriangle(farleft);
- setorg(*farleft, sortarray[0]);
- setdest(*farleft, sortarray[1]);
- /* The apex is intentionally left NULL. */
- maketriangle(farright);
- setorg(*farright, sortarray[1]);
- setdest(*farright, sortarray[0]);
- /* The apex is intentionally left NULL. */
- bond(*farleft, *farright);
- lprevself(*farleft);
- lnextself(*farright);
- bond(*farleft, *farright);
- lprevself(*farleft);
- lnextself(*farright);
- bond(*farleft, *farright);
- /* Ensure that the origin of `farleft' is sortarray[0]. */
- lprev(*farright, *farleft);
- return;
- } else if (vertices == 3) {
- /* The triangulation of three vertices is either a triangle (with */
- /* three bounding triangles) or two edges (with four bounding */
- /* triangles). In either case, four triangles are created. */
- maketriangle(&midtri);
- maketriangle(&tri1);
- maketriangle(&tri2);
- maketriangle(&tri3);
- area = counterclockwise(sortarray[0], sortarray[1], sortarray[2]);
- if (area == 0.0) {
- /* Three collinear points; the triangulation is two edges. */
- setorg(midtri, sortarray[0]);
- setdest(midtri, sortarray[1]);
- setorg(tri1, sortarray[1]);
- setdest(tri1, sortarray[0]);
- setorg(tri2, sortarray[2]);
- setdest(tri2, sortarray[1]);
- setorg(tri3, sortarray[1]);
- setdest(tri3, sortarray[2]);
- /* All apices are intentionally left NULL. */
- bond(midtri, tri1);
- bond(tri2, tri3);
- lnextself(midtri);
- lprevself(tri1);
- lnextself(tri2);
- lprevself(tri3);
- bond(midtri, tri3);
- bond(tri1, tri2);
- lnextself(midtri);
- lprevself(tri1);
- lnextself(tri2);
- lprevself(tri3);
- bond(midtri, tri1);
- bond(tri2, tri3);
- /* Ensure that the origin of `farleft' is sortarray[0]. */
- triedgecopy(tri1, *farleft);
- /* Ensure that the destination of `farright' is sortarray[2]. */
- triedgecopy(tri2, *farright);
- } else {
- /* The three points are not collinear; the triangulation is one */
- /* triangle, namely `midtri'. */
- setorg(midtri, sortarray[0]);
- setdest(tri1, sortarray[0]);
- setorg(tri3, sortarray[0]);
- /* Apices of tri1, tri2, and tri3 are left NULL. */
- if (area > 0.0) {
- /* The vertices are in counterclockwise order. */
- setdest(midtri, sortarray[1]);
- setorg(tri1, sortarray[1]);
- setdest(tri2, sortarray[1]);
- setapex(midtri, sortarray[2]);
- setorg(tri2, sortarray[2]);
- setdest(tri3, sortarray[2]);
- } else {
- /* The vertices are in clockwise order. */
- setdest(midtri, sortarray[2]);
- setorg(tri1, sortarray[2]);
- setdest(tri2, sortarray[2]);
- setapex(midtri, sortarray[1]);
- setorg(tri2, sortarray[1]);
- setdest(tri3, sortarray[1]);
- }
- /* The topology does not depend on how the vertices are ordered. */
- bond(midtri, tri1);
- lnextself(midtri);
- bond(midtri, tri2);
- lnextself(midtri);
- bond(midtri, tri3);
- lprevself(tri1);
- lnextself(tri2);
- bond(tri1, tri2);
- lprevself(tri1);
- lprevself(tri3);
- bond(tri1, tri3);
- lnextself(tri2);
- lprevself(tri3);
- bond(tri2, tri3);
- /* Ensure that the origin of `farleft' is sortarray[0]. */
- triedgecopy(tri1, *farleft);
- /* Ensure that the destination of `farright' is sortarray[2]. */
- if (area > 0.0) {
- triedgecopy(tri2, *farright);
- } else {
- lnext(*farleft, *farright);
- }
- }
- return;
- } else {
- /* Split the vertices in half. */
- divider = vertices >> 1;
- /* Recursively triangulate each half. */
- divconqrecurse(sortarray, divider, 1 - axis, farleft, &innerleft);
- divconqrecurse(&sortarray[divider], vertices - divider, 1 - axis,
- &innerright, farright);
- /* Merge the two triangulations into one. */
- mergehulls(farleft, &innerleft, &innerright, farright, axis);
- }
- }
-
- long removeghosts(struct triedge *startghost)
- {
- struct triedge searchedge;
- struct triedge dissolveedge;
- struct triedge deadtri;
- long hullsize;
- triangle ptr; /* Temporary variable used by sym(). */
-
- /* Find an edge on the convex hull to start point location from. */
- lprev(*startghost, searchedge);
- symself(searchedge);
- dummytri[0] = encode(searchedge);
- /* Remove the bounding box and count the convex hull edges. */
- triedgecopy(*startghost, dissolveedge);
- hullsize = 0;
- do {
- hullsize++;
- lnext(dissolveedge, deadtri);
- lprevself(dissolveedge);
- symself(dissolveedge);
- /* Remove a bounding triangle from a convex hull triangle. */
- dissolve(dissolveedge);
- /* Find the next bounding triangle. */
- sym(deadtri, dissolveedge);
- /* Delete the bounding triangle. */
- triangledealloc(deadtri.tri);
- } while (!triedgeequal(dissolveedge, *startghost));
- return hullsize;
- }
-
- /*****************************************************************************/
- /* */
- /* divconqdelaunay() Form a Delaunay triangulation by the divide-and- */
- /* conquer method. */
- /* */
- /* Sorts the points, calls a recursive procedure to triangulate them, and */
- /* removes the bounding box, setting boundary markers as appropriate. */
- /* */
- /*****************************************************************************/
-
- long divconqdelaunay(void)
- {
- point *sortarray;
- struct triedge hullleft, hullright;
- int divider;
- int i, j;
-
- /* Allocate an array of pointers to points for sorting. */
- sortarray = (point *) malloc(inpoints * sizeof(point));
- if (sortarray == (point *) NULL) {
- vTrace("Error: Out of memory.");
- exit(1);
- }
- traversalinit(&points);
- for (i = 0; i < inpoints; i++) {
- sortarray[i] = pointtraverse();
- }
- /* Sort the points. */
- pointsort(sortarray, inpoints);
- /* Discard duplicate points, which can really mess up the algorithm. */
- i = 0;
- for (j = 1; j < inpoints; j++) {
- if ((sortarray[i][0] == sortarray[j][0])
- && (sortarray[i][1] == sortarray[j][1])) {
- /* Commented out - would eliminate point from output .node file, but causes
- a failure if some segment has this point as an endpoint.
- setpointmark(sortarray[j], DEADPOINT);
- */
- } else {
- i++;
- sortarray[i] = sortarray[j];
- }
- }
- i++;
- /* Re-sort the array of points to accommodate alternating cuts. */
- divider = i >> 1;
- if (i - divider >= 2) {
- if (divider >= 2) {
- alternateaxes(sortarray, divider, 1);
- }
- alternateaxes(&sortarray[divider], i - divider, 1);
- }
- /* Form the Delaunay triangulation. */
- divconqrecurse(sortarray, i, 0, &hullleft, &hullright);
- free(sortarray);
-
- return removeghosts(&hullleft);
- }
-
- /** **/
- /** **/
- /********* Divide-and-conquer Delaunay triangulation ends here *********/
-
- /********* General mesh construction routines begin here *********/
- /** **/
- /** **/
-
- /*****************************************************************************/
- /* */
- /* delaunay() Form a Delaunay triangulation. */
- /* */
- /*****************************************************************************/
-
- long delaunay(void)
- {
- eextras = 0;
- initializetrisegpools();
-
- return divconqdelaunay();
- }
-
- /** **/
- /** **/
- /********* General mesh construction routines end here *********/
-
- /********* Segment (shell edge) insertion begins here *********/
- /** **/
- /** **/
-
- /*****************************************************************************/
- /* */
- /* finddirection() Find the first triangle on the path from one point */
- /* to another. */
- /* */
- /* Finds the triangle that intersects a line segment drawn from the */
- /* origin of `searchtri' to the point `endpoint', and returns the result */
- /* in `searchtri'. The origin of `searchtri' does not change, even though */
- /* the triangle returned may differ from the one passed in. This routine */
- /* is used to find the direction to move in to get from one point to */
- /* another. */
- /* */
- /* The return value notes whether the destination or apex of the found */
- /* triangle is collinear with the two points in question. */
- /* */
- /*****************************************************************************/
-
- enum finddirectionresult finddirection(
- struct triedge *searchtri,
- point endpoint)
- {
- struct triedge checktri;
- point startpoint;
- point leftpoint, rightpoint;
- double leftccw, rightccw;
- int leftflag, rightflag;
- triangle ptr; /* Temporary variable used by onext() and oprev(). */
-
- org(*searchtri, startpoint);
- dest(*searchtri, rightpoint);
- apex(*searchtri, leftpoint);
- /* Is `endpoint' to the left? */
- leftccw = counterclockwise(endpoint, startpoint, leftpoint);
- leftflag = leftccw > 0.0;
- /* Is `endpoint' to the right? */
- rightccw = counterclockwise(startpoint, endpoint, rightpoint);
- rightflag = rightccw > 0.0;
- if (leftflag && rightflag) {
- /* `searchtri' faces directly away from `endpoint'. We could go */
- /* left or right. Ask whether it's a triangle or a boundary */
- /* on the left. */
- onext(*searchtri, checktri);
- if (checktri.tri == dummytri) {
- leftflag = 0;
- } else {
- rightflag = 0;
- }
- }
- while (leftflag) {
- /* Turn left until satisfied. */
- onextself(*searchtri);
- if (searchtri->tri == dummytri) {
- vTrace("Internal error in finddirection(): Unable to find a");
- vTrace(" triangle leading from (%.12g, %.12g) to", startpoint[0],
- startpoint[1]);
- vTrace(" (%.12g, %.12g).", endpoint[0], endpoint[1]);
- internalerror();
- }
- apex(*searchtri, leftpoint);
- rightccw = leftccw;
- leftccw = counterclockwise(endpoint, startpoint, leftpoint);
- leftflag = leftccw > 0.0;
- }
- while (rightflag) {
- /* Turn right until satisfied. */
- oprevself(*searchtri);
- if (searchtri->tri == dummytri) {
- vTrace("Internal error in finddirection(): Unable to find a");
- vTrace(" triangle leading from (%.12g, %.12g) to", startpoint[0],
- startpoint[1]);
- vTrace(" (%.12g, %.12g).", endpoint[0], endpoint[1]);
- internalerror();
- }
- dest(*searchtri, rightpoint);
- leftccw = rightccw;
- rightccw = counterclockwise(startpoint, endpoint, rightpoint);
- rightflag = rightccw > 0.0;
- }
- if (leftccw == 0.0) {
- return LEFTCOLLINEAR;
- } else if (rightccw == 0.0) {
- return RIGHTCOLLINEAR;
- } else {
- return WITHIN;
- }
- }
-
- /*****************************************************************************/
- /* */
- /* segmentintersection() Find the intersection of an existing segment */
- /* and a segment that is being inserted. Insert */
- /* a point at the intersection, splitting an */
- /* existing shell edge. */
- /* */
- /* The segment being inserted connects the apex of splittri to endpoint2. */
- /* splitshelle is the shell edge being split, and MUST be opposite */
- /* splittri. Hence, the edge being split connects the origin and */
- /* destination of splittri. */
- /* */
- /* On completion, splittri is a handle having the newly inserted */
- /* intersection point as its origin, and endpoint1 as its destination. */
- /* */
- /*****************************************************************************/
-
- void segmentintersection(
- struct triedge *splittri,
- struct edge *splitshelle,
- point endpoint2)
- {
- point endpoint1;
- point torg, tdest;
- point leftpoint, rightpoint;
- point newpoint;
- enum insertsiteresult success;
- enum finddirectionresult collinear;
- double ex, ey;
- double tx, ty;
- double etx, ety;
- double split, denom;
- int i;
- triangle ptr; /* Temporary variable used by onext(). */
-
- /* Find the other three segment endpoints. */
- apex(*splittri, endpoint1);
- org(*splittri, torg);
- dest(*splittri, tdest);
- /* Segment intersection formulae; see the Antonio reference. */
- tx = tdest[0] - torg[0];
- ty = tdest[1] - torg[1];
- ex = endpoint2[0] - endpoint1[0];
- ey = endpoint2[1] - endpoint1[1];
- etx = torg[0] - endpoint2[0];
- ety = torg[1] - endpoint2[1];
- denom = ty * ex - tx * ey;
- if (denom == 0.0) {
- vTrace("Internal error in segmentintersection():");
- vTrace(" Attempt to find intersection of parallel segments.");
- internalerror();
- }
- split = (ey * etx - ex * ety) / denom;
- /* Create the new point. */
- newpoint = (point) poolalloc(&points);
- /* Interpolate its coordinate and attributes. */
- for (i = 0; i < 2 + nextras; i++) {
- newpoint[i] = torg[i] + split * (tdest[i] - torg[i]);
- }
- setpointmark(newpoint, mark(*splitshelle));
- /* Insert the intersection point. This should always succeed. */
- success = insertsite(newpoint, splittri, splitshelle, 0, 0);
- if (success != SUCCESSFULPOINT) {
- vTrace("Internal error in segmentintersection():");
- vTrace(" Failure to split a segment.");
- internalerror();
- }
- /* Inserting the point may have caused edge flips. We wish to rediscover */
- /* the edge connecting endpoint1 to the new intersection point. */
- collinear = finddirection(splittri, endpoint1);
- dest(*splittri, rightpoint);
- apex(*splittri, leftpoint);
- if ((leftpoint[0] == endpoint1[0]) && (leftpoint[1] == endpoint1[1])) {
- onextself(*splittri);
- } else if ((rightpoint[0] != endpoint1[0]) ||
- (rightpoint[1] != endpoint1[1])) {
- vTrace("Internal error in segmentintersection():");
- vTrace(" Topological inconsistency after splitting a segment.");
- internalerror();
- }
- /* `splittri' should have destination endpoint1. */
- }
-
- /*****************************************************************************/
- /* */
- /* scoutsegment() Scout the first triangle on the path from one endpoint */
- /* to another, and check for completion (reaching the */
- /* second endpoint), a collinear point, and the */
- /* intersection of two segments. */
- /* */
- /* Returns one if the entire segment is successfully inserted, and zero if */
- /* the job must be finished by conformingedge() or constrainededge(). */
- /* */
- /* If the first triangle on the path has the second endpoint as its */
- /* destination or apex, a shell edge is inserted and the job is done. */
- /* */
- /* If the first triangle on the path has a destination or apex that lies on */
- /* the segment, a shell edge is inserted connecting the first endpoint to */
- /* the collinear point, and the search is continued from the collinear */
- /* point. */
- /* */
- /* If the first triangle on the path has a shell edge opposite its origin, */
- /* then there is a segment that intersects the segment being inserted. */
- /* Their intersection point is inserted, splitting the shell edge. */
- /* */
- /* Otherwise, return zero. */
- /* */
- /*****************************************************************************/
-
- int scoutsegment(
- struct triedge *searchtri,
- point endpoint2,
- int newmark)
- {
- struct triedge crosstri;
- struct edge crossedge;
- point leftpoint, rightpoint;
- point endpoint1;
- enum finddirectionresult collinear;
- shelle sptr; /* Temporary variable used by tspivot(). */
-
- collinear = finddirection(searchtri, endpoint2);
- dest(*searchtri, rightpoint);
- apex(*searchtri, leftpoint);
- if (((leftpoint[0] == endpoint2[0]) && (leftpoint[1] == endpoint2[1])) ||
- ((rightpoint[0] == endpoint2[0]) && (rightpoint[1] == endpoint2[1]))) {
- /* The segment is already an edge in the mesh. */
- if ((leftpoint[0] == endpoint2[0]) && (leftpoint[1] == endpoint2[1])) {
- lprevself(*searchtri);
- }
- /* Insert a shell edge, if there isn't already one there. */
- insertshelle(searchtri, newmark);
- return 1;
- } else if (collinear == LEFTCOLLINEAR) {
- /* We've collided with a point between the segment's endpoints. */
- /* Make the collinear point be the triangle's origin. */
- lprevself(*searchtri);
- insertshelle(searchtri, newmark);
- /* Insert the remainder of the segment. */
- return scoutsegment(searchtri, endpoint2, newmark);
- } else if (collinear == RIGHTCOLLINEAR) {
- /* We've collided with a point between the segment's endpoints. */
- insertshelle(searchtri, newmark);
- /* Make the collinear point be the triangle's origin. */
- lnextself(*searchtri);
- /* Insert the remainder of the segment. */
- return scoutsegment(searchtri, endpoint2, newmark);
- } else {
- lnext(*searchtri, crosstri);
- tspivot(crosstri, crossedge);
- /* Check for a crossing segment. */
- if (crossedge.sh == dummysh) {
- return 0;
- } else {
- org(*searchtri, endpoint1);
- /* Insert a point at the intersection. */
- segmentintersection(&crosstri, &crossedge, endpoint2);
- triedgecopy(crosstri, *searchtri);
- insertshelle(searchtri, newmark);
- /* Insert the remainder of the segment. */
- return scoutsegment(searchtri, endpoint2, newmark);
- }
- }
- }
-
- /*****************************************************************************/
- /* */
- /* delaunayfixup() Enforce the Delaunay condition at an edge, fanning out */
- /* recursively from an existing point. Pay special */
- /* attention to stacking inverted triangles. */
- /* */
- /* This is a support routine for inserting segments into a constrained */
- /* Delaunay triangulation. */
- /* */
- /* The origin of fixuptri is treated as if it has just been inserted, and */
- /* the local Delaunay condition needs to be enforced. It is only enforced */
- /* in one sector, however, that being the angular range defined by */
- /* fixuptri. */
- /* */
- /* This routine also needs to make decisions regarding the "stacking" of */
- /* triangles. (Read the description of constrainededge() below before */
- /* reading on here, so you understand the algorithm.) If the position of */
- /* the new point (the origin of fixuptri) indicates that the vertex before */
- /* it on the polygon is a reflex vertex, then "stack" the triangle by */
- /* doing nothing. (fixuptri is an inverted triangle, which is how stacked */
- /* triangles are identified.) */
- /* */
- /* Otherwise, check whether the vertex before that was a reflex vertex. */
- /* If so, perform an edge flip, thereby eliminating an inverted triangle */
- /* (popping it off the stack). The edge flip may result in the creation */
- /* of a new inverted triangle, depending on whether or not the new vertex */
- /* is visible to the vertex three edges behind on the polygon. */
- /* */
- /* If neither of the two vertices behind the new vertex are reflex */
- /* vertices, fixuptri and fartri, the triangle opposite it, are not */
- /* inverted; hence, ensure that the edge between them is locally Delaunay. */
- /* */
- /* `leftside' indicates whether or not fixuptri is to the left of the */
- /* segment being inserted. (Imagine that the segment is pointing up from */
- /* endpoint1 to endpoint2.) */
- /* */
- /*****************************************************************************/
-
- void delaunayfixup(
- struct triedge *fixuptri,
- int leftside)
- {
- struct triedge neartri;
- struct triedge fartri;
- struct edge faredge;
- point nearpoint, leftpoint, rightpoint, farpoint;
- triangle ptr; /* Temporary variable used by sym(). */
- shelle sptr; /* Temporary variable used by tspivot(). */
-
- lnext(*fixuptri, neartri);
- sym(neartri, fartri);
- /* Check if the edge opposite the origin of fixuptri can be flipped. */
- if (fartri.tri == dummytri) {
- return;
- }
- tspivot(neartri, faredge);
- if (faredge.sh != dummysh) {
- return;
- }
- /* Find all the relevant vertices. */
- apex(neartri, nearpoint);
- org(neartri, leftpoint);
- dest(neartri, rightpoint);
- apex(fartri, farpoint);
- /* Check whether the previous polygon vertex is a reflex vertex. */
- if (leftside) {
- if (counterclockwise(nearpoint, leftpoint, farpoint) <= 0.0) {
- /* leftpoint is a reflex vertex too. Nothing can */
- /* be done until a convex section is found. */
- return;
- }
- } else {
- if (counterclockwise(farpoint, rightpoint, nearpoint) <= 0.0) {
- /* rightpoint is a reflex vertex too. Nothing can */
- /* be done until a convex section is found. */
- return;
- }
- }
- if (counterclockwise(rightpoint, leftpoint, farpoint) > 0.0) {
- /* fartri is not an inverted triangle, and farpoint is not a reflex */
- /* vertex. As there are no reflex vertices, fixuptri isn't an */
- /* inverted triangle, either. Hence, test the edge between the */
- /* triangles to ensure it is locally Delaunay. */
- if (incircle(leftpoint, farpoint, rightpoint, nearpoint) <= 0.0) {
- return;
- }
- /* Not locally Delaunay; go on to an edge flip. */
- } /* else fartri is inverted; remove it from the stack by flipping. */
- flip(&neartri);
- lprevself(*fixuptri); /* Restore the origin of fixuptri after the flip. */
- /* Recursively process the two triangles that result from the flip. */
- delaunayfixup(fixuptri, leftside);
- delaunayfixup(&fartri, leftside);
- }
-
- /*****************************************************************************/
- /* */
- /* constrainededge() Force a segment into a constrained Delaunay */
- /* triangulation by deleting the triangles it */
- /* intersects, and triangulating the polygons that */
- /* form on each side of it. */
- /* */
- /* Generates a single edge connecting `endpoint1' to `endpoint2'. The */
- /* triangle `starttri' has `endpoint1' as its origin. `newmark' is the */
- /* boundary marker of the segment. */
- /* */
- /* To insert a segment, every triangle whose interior intersects the */
- /* segment is deleted. The union of these deleted triangles is a polygon */
- /* (which is not necessarily monotone, but is close enough), which is */
- /* divided into two polygons by the new segment. This routine's task is */
- /* to generate the Delaunay triangulation of these two polygons. */
- /* */
- /* You might think of this routine's behavior as a two-step process. The */
- /* first step is to walk from endpoint1 to endpoint2, flipping each edge */
- /* encountered. This step creates a fan of edges connected to endpoint1, */
- /* including the desired edge to endpoint2. The second step enforces the */
- /* Delaunay condition on each side of the segment in an incremental manner: */
- /* proceeding along the polygon from endpoint1 to endpoint2 (this is done */
- /* independently on each side of the segment), each vertex is "enforced" */
- /* as if it had just been inserted, but affecting only the previous */
- /* vertices. The result is the same as if the vertices had been inserted */
- /* in the order they appear on the polygon, so the result is Delaunay. */
- /* */
- /* In truth, constrainededge() interleaves these two steps. The procedure */
- /* walks from endpoint1 to endpoint2, and each time an edge is encountered */
- /* and flipped, the newly exposed vertex (at the far end of the flipped */
- /* edge) is "enforced" upon the previously flipped edges, usually affecting */
- /* only one side of the polygon (depending upon which side of the segment */
- /* the vertex falls on). */
- /* */
- /* The algorithm is complicated by the need to handle polygons that are not */
- /* convex. Although the polygon is not necessarily monotone, it can be */
- /* triangulated in a manner similar to the stack-based algorithms for */
- /* monotone polygons. For each reflex vertex (local concavity) of the */
- /* polygon, there will be an inverted triangle formed by one of the edge */
- /* flips. (An inverted triangle is one with negative area - that is, its */
- /* vertices are arranged in clockwise order - and is best thought of as a */
- /* wrinkle in the fabric of the mesh.) Each inverted triangle can be */
- /* thought of as a reflex vertex pushed on the stack, waiting to be fixed */
- /* later. */
- /* */
- /* A reflex vertex is popped from the stack when a vertex is inserted that */
- /* is visible to the reflex vertex. (However, if the vertex behind the */
- /* reflex vertex is not visible to the reflex vertex, a new inverted */
- /* triangle will take its place on the stack.) These details are handled */
- /* by the delaunayfixup() routine above. */
- /* */
- /*****************************************************************************/
-
- void constrainededge(
- struct triedge *starttri,
- point endpoint2,
- int newmark)
- {
- struct triedge fixuptri, fixuptri2;
- struct edge fixupedge;
- point endpoint1;
- point farpoint;
- double area;
- int collision;
- int done;
- triangle ptr; /* Temporary variable used by sym() and oprev(). */
- shelle sptr; /* Temporary variable used by tspivot(). */
-
- org(*starttri, endpoint1);
- lnext(*starttri, fixuptri);
- flip(&fixuptri);
- /* `collision' indicates whether we have found a point directly */
- /* between endpoint1 and endpoint2. */
- collision = 0;
- done = 0;
- do {
- org(fixuptri, farpoint);
- /* `farpoint' is the extreme point of the polygon we are "digging" */
- /* to get from endpoint1 to endpoint2. */
- if ((farpoint[0] == endpoint2[0]) && (farpoint[1] == endpoint2[1])) {
- oprev(fixuptri, fixuptri2);
- /* Enforce the Delaunay condition around endpoint2. */
- delaunayfixup(&fixuptri, 0);
- delaunayfixup(&fixuptri2, 1);
- done = 1;
- } else {
- /* Check whether farpoint is to the left or right of the segment */
- /* being inserted, to decide which edge of fixuptri to dig */
- /* through next. */
- area = counterclockwise(endpoint1, endpoint2, farpoint);
- if (area == 0.0) {
- /* We've collided with a point between endpoint1 and endpoint2. */
- collision = 1;
- oprev(fixuptri, fixuptri2);
- /* Enforce the Delaunay condition around farpoint. */
- delaunayfixup(&fixuptri, 0);
- delaunayfixup(&fixuptri2, 1);
- done = 1;
- } else {
- if (area > 0.0) { /* farpoint is to the left of the segment. */
- oprev(fixuptri, fixuptri2);
- /* Enforce the Delaunay condition around farpoint, on the */
- /* left side of the segment only. */
- delaunayfixup(&fixuptri2, 1);
- /* Flip the edge that crosses the segment. After the edge is */
- /* flipped, one of its endpoints is the fan vertex, and the */
- /* destination of fixuptri is the fan vertex. */
- lprevself(fixuptri);
- } else { /* farpoint is to the right of the segment. */
- delaunayfixup(&fixuptri, 0);
- /* Flip the edge that crosses the segment. After the edge is */
- /* flipped, one of its endpoints is the fan vertex, and the */
- /* destination of fixuptri is the fan vertex. */
- oprevself(fixuptri);
- }
- /* Check for two intersecting segments. */
- tspivot(fixuptri, fixupedge);
- if (fixupedge.sh == dummysh) {
- flip(&fixuptri); /* May create an inverted triangle on the left. */
- } else {
- /* We've collided with a segment between endpoint1 and endpoint2. */
- collision = 1;
- /* Insert a point at the intersection. */
- segmentintersection(&fixuptri, &fixupedge, endpoint2);
- done = 1;
- }
- }
- }
- } while (!done);
- /* Insert a shell edge to make the segment permanent. */
- insertshelle(&fixuptri, newmark);
- /* If there was a collision with an interceding vertex, install another */
- /* segment connecting that vertex with endpoint2. */
- if (collision) {
- /* Insert the remainder of the segment. */
- if (!scoutsegment(&fixuptri, endpoint2, newmark)) {
- constrainededge(&fixuptri, endpoint2, newmark);
- }
- }
- }
-
- /*****************************************************************************/
- /* */
- /* insertsegment() Insert a PSLG segment into a triangulation. */
- /* */
- /*****************************************************************************/
-
- void insertsegment(
- point endpoint1,
- point endpoint2,
- int newmark)
- {
- struct triedge searchtri1, searchtri2;
- triangle encodedtri;
- point checkpoint;
- triangle ptr; /* Temporary variable used by sym(). */
-
- /* Find a triangle whose origin is the segment's first endpoint. */
- checkpoint = (point) NULL;
- encodedtri = point2tri(endpoint1);
- if (encodedtri != (triangle) NULL) {
- decode(encodedtri, searchtri1);
- org(searchtri1, checkpoint);
- }
- if (checkpoint != endpoint1) {
- /* Find a boundary triangle to search from. */
- searchtri1.tri = dummytri;
- searchtri1.orient = 0;
- symself(searchtri1);
- /* Search for the segment's first endpoint by point location. */
- if (locate(endpoint1, &searchtri1) != ONVERTEX) {
- vTrace(
- "Internal error in insertsegment(): Unable to locate PSLG point");
- vTrace(" (%.12g, %.12g) in triangulation.",
- endpoint1[0], endpoint1[1]);
- internalerror();
- }
- }
- /* Remember this triangle to improve subsequent point location. */
- triedgecopy(searchtri1, recenttri);
- /* Scout the beginnings of a path from the first endpoint */
- /* toward the second. */
- if (scoutsegment(&searchtri1, endpoint2, newmark)) {
- /* The segment was easily inserted. */
- return;
- }
- /* The first endpoint may have changed if a collision with an intervening */
- /* vertex on the segment occurred. */
- org(searchtri1, endpoint1);
-
- /* Find a triangle whose origin is the segment's second endpoint. */
- checkpoint = (point) NULL;
- encodedtri = point2tri(endpoint2);
- if (encodedtri != (triangle) NULL) {
- decode(encodedtri, searchtri2);
- org(searchtri2, checkpoint);
- }
- if (checkpoint != endpoint2) {
- /* Find a boundary triangle to search from. */
- searchtri2.tri = dummytri;
- searchtri2.orient = 0;
- symself(searchtri2);
- /* Search for the segment's second endpoint by point location. */
- if (locate(endpoint2, &searchtri2) != ONVERTEX) {
- vTrace(
- "Internal error in insertsegment(): Unable to locate PSLG point");
- vTrace(" (%.12g, %.12g) in triangulation.",
- endpoint2[0], endpoint2[1]);
- internalerror();
- }
- }
- /* Remember this triangle to improve subsequent point location. */
- triedgecopy(searchtri2, recenttri);
- /* Scout the beginnings of a path from the second endpoint */
- /* toward the first. */
- if (scoutsegment(&searchtri2, endpoint1, newmark)) {
- /* The segment was easily inserted. */
- return;
- }
- /* The second endpoint may have changed if a collision with an intervening */
- /* vertex on the segment occurred. */
- org(searchtri2, endpoint2);
-
- /* Insert the segment directly into the triangulation. */
- constrainededge(&searchtri1, endpoint2, newmark);
- }
-
- /*****************************************************************************/
- /* */
- /* formskeleton() Create the shell edges of a triangulation, including */
- /* PSLG edges and edges on the convex hull. */
- /* */
- /* The PSLG edges are read from a .poly file. The return value is the */
- /* number of segments in the file. */
- /* */
- /*****************************************************************************/
-
- int formskeleton(
- int *segmentlist,
- int *segmentmarkerlist,
- int numberofsegments)
- {
- char polyfilename[6];
- int index;
- point endpoint1, endpoint2;
- int segments;
- int segmentmarkers;
- int end1, end2;
- int boundmarker;
- int i;
-
- strcpy(polyfilename, "input");
- segments = numberofsegments;
- segmentmarkers = segmentmarkerlist != (int *) NULL;
- index = 0;
- /* If segments are to be inserted, compute a mapping */
- /* from points to triangles. */
- if (segments > 0) {
- makepointmap();
-
- boundmarker = 0;
- /* Read and insert the segments. */
- for (i = 1; i <= segments; i++) {
- end1 = segmentlist[index++];
- end2 = segmentlist[index++];
- if (segmentmarkers) {
- boundmarker = segmentmarkerlist[i - 1];
- }
- if ((end1 < 0) || (end1 >= inpoints)) {
- } else if ((end2 < 0) || (end2 >= inpoints)) {
- } else {
- endpoint1 = getpoint(end1);
- endpoint2 = getpoint(end2);
- if ((endpoint1[0] == endpoint2[0]) && (endpoint1[1] == endpoint2[1])) {
- } else {
- insertsegment(endpoint1, endpoint2, boundmarker);
- }
- }
- }
- } else {
- segments = 0;
- }
-
- return segments;
- }
-
- /** **/
- /** **/
- /********* Segment (shell edge) insertion ends here *********/
-
- /********* Carving out holes and concavities begins here *********/
- /** **/
- /** **/
-
- /*****************************************************************************/
- /* */
- /* infecthull() Virally infect all of the triangles of the convex hull */
- /* that are not protected by shell edges. Where there are */
- /* shell edges, set boundary markers as appropriate. */
- /* */
- /*****************************************************************************/
-
- void infecthull(void)
- {
- struct triedge hulltri;
- struct triedge nexttri;
- struct triedge starttri;
- struct edge hulledge;
- triangle **deadtri;
- point horg, hdest;
- triangle ptr; /* Temporary variable used by sym(). */
- shelle sptr; /* Temporary variable used by tspivot(). */
-
- /* Find a triangle handle on the hull. */
- hulltri.tri = dummytri;
- hulltri.orient = 0;
- symself(hulltri);
- /* Remember where we started so we know when to stop. */
- triedgecopy(hulltri, starttri);
- /* Go once counterclockwise around the convex hull. */
- do {
- /* Ignore triangles that are already infected. */
- if (!infected(hulltri)) {
- /* Is the triangle protected by a shell edge? */
- tspivot(hulltri, hulledge);
- if (hulledge.sh == dummysh) {
- /* The triangle is not protected; infect it. */
- infect(hulltri);
- deadtri = (triangle **) poolalloc(&viri);
- *deadtri = hulltri.tri;
- } else {
- /* The triangle is protected; set boundary markers if appropriate. */
- if (mark(hulledge) == 0) {
- setmark(hulledge, 1);
- org(hulltri, horg);
- dest(hulltri, hdest);
- if (pointmark(horg) == 0) {
- setpointmark(horg, 1);
- }
- if (pointmark(hdest) == 0) {
- setpointmark(hdest, 1);
- }
- }
- }
- }
- /* To find the next hull edge, go clockwise around the next vertex. */
- lnextself(hulltri);
- oprev(hulltri, nexttri);
- while (nexttri.tri != dummytri) {
- triedgecopy(nexttri, hulltri);
- oprev(hulltri, nexttri);
- }
- } while (!triedgeequal(hulltri, starttri));
- }
-
- /*****************************************************************************/
- /* */
- /* plague() Spread the virus from all infected triangles to any neighbors */
- /* not protected by shell edges. Delete all infected triangles. */
- /* */
- /* This is the procedure that actually creates holes and concavities. */
- /* */
- /* This procedure operates in two phases. The first phase identifies all */
- /* the triangles that will die, and marks them as infected. They are */
- /* marked to ensure that each triangle is added to the virus pool only */
- /* once, so the procedure will terminate. */
- /* */
- /* The second phase actually eliminates the infected triangles. It also */
- /* eliminates orphaned points. */
- /* */
- /*****************************************************************************/
-
- void plague(void)
- {
- struct triedge testtri;
- struct triedge neighbor;
- triangle **virusloop;
- triangle **deadtri;
- struct edge neighborshelle;
- point testpoint;
- point norg, ndest;
- int killorg;
- triangle ptr; /* Temporary variable used by sym() and onext(). */
- shelle sptr; /* Temporary variable used by tspivot(). */
-
- /* Loop through all the infected triangles, spreading the virus to */
- /* their neighbors, then to their neighbors' neighbors. */
- traversalinit(&viri);
- virusloop = (triangle **) traverse(&viri);
- while (virusloop != (triangle **) NULL) {
- testtri.tri = *virusloop;
- /* A triangle is marked as infected by messing with one of its shell */
- /* edges, setting it to an illegal value. Hence, we have to */
- /* temporarily uninfect this triangle so that we can examine its */
- /* adjacent shell edges. */
- uninfect(testtri);
- /* Check each of the triangle's three neighbors. */
- for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
- /* Find the neighbor. */
- sym(testtri, neighbor);
- /* Check for a shell between the triangle and its neighbor. */
- tspivot(testtri, neighborshelle);
- /* Check if the neighbor is nonexistent or already infected. */
- if ((neighbor.tri == dummytri) || infected(neighbor)) {
- if (neighborshelle.sh != dummysh) {
- /* There is a shell edge separating the triangle from its */
- /* neighbor, but both triangles are dying, so the shell */
- /* edge dies too. */
- shelledealloc(neighborshelle.sh);
- if (neighbor.tri != dummytri) {
- /* Make sure the shell edge doesn't get deallocated again */
- /* later when the infected neighbor is visited. */
- uninfect(neighbor);
- tsdissolve(neighbor);
- infect(neighbor);
- }
- }
- } else { /* The neighbor exists and is not infected. */
- if (neighborshelle.sh == dummysh) {
- /* There is no shell edge protecting the neighbor, so */
- /* the neighbor becomes infected. */
- infect(neighbor);
- /* Ensure that the neighbor's neighbors will be infected. */
- deadtri = (triangle **) poolalloc(&viri);
- *deadtri = neighbor.tri;
- } else { /* The neighbor is protected by a shell edge. */
- /* Remove this triangle from the shell edge. */
- stdissolve(neighborshelle);
- /* The shell edge becomes a boundary. Set markers accordingly. */
- if (mark(neighborshelle) == 0) {
- setmark(neighborshelle, 1);
- }
- org(neighbor, norg);
- dest(neighbor, ndest);
- if (pointmark(norg) == 0) {
- setpointmark(norg, 1);
- }
- if (pointmark(ndest) == 0) {
- setpointmark(ndest, 1);
- }
- }
- }
- }
- /* Remark the triangle as infected, so it doesn't get added to the */
- /* virus pool again. */
- infect(testtri);
- virusloop = (triangle **) traverse(&viri);
- }
-
- traversalinit(&viri);
- virusloop = (triangle **) traverse(&viri);
- while (virusloop != (triangle **) NULL) {
- testtri.tri = *virusloop;
-
- /* Check each of the three corners of the triangle for elimination. */
- /* This is done by walking around each point, checking if it is */
- /* still connected to at least one live triangle. */
- for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
- org(testtri, testpoint);
- /* Check if the point has already been tested. */
- if (testpoint != (point) NULL) {
- killorg = 1;
- /* Mark the corner of the triangle as having been tested. */
- setorg(testtri, NULL);
- /* Walk counterclockwise about the point. */
- onext(testtri, neighbor);
- /* Stop upon reaching a boundary or the starting triangle. */
- while ((neighbor.tri != dummytri)
- && (!triedgeequal(neighbor, testtri))) {
- if (infected(neighbor)) {
- /* Mark the corner of this triangle as having been tested. */
- setorg(neighbor, NULL);
- } else {
- /* A live triangle. The point survives. */
- killorg = 0;
- }
- /* Walk counterclockwise about the point. */
- onextself(neighbor);
- }
- /* If we reached a boundary, we must walk clockwise as well. */
- if (neighbor.tri == dummytri) {
- /* Walk clockwise about the point. */
- oprev(testtri, neighbor);
- /* Stop upon reaching a boundary. */
- while (neighbor.tri != dummytri) {
- if (infected(neighbor)) {
- /* Mark the corner of this triangle as having been tested. */
- setorg(neighbor, NULL);
- } else {
- /* A live triangle. The point survives. */
- killorg = 0;
- }
- /* Walk clockwise about the point. */
- oprevself(neighbor);
- }
- }
- if (killorg) {
- pointdealloc(testpoint);
- }
- }
- }
-
- /* Record changes in the number of boundary edges, and disconnect */
- /* dead triangles from their neighbors. */
- for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
- sym(testtri, neighbor);
- if (neighbor.tri == dummytri) {
- /* There is no neighboring triangle on this edge, so this edge */
- /* is a boundary edge. This triangle is being deleted, so this */
- /* boundary edge is deleted. */
- hullsize--;
- } else {
- /* Disconnect the triangle from its neighbor. */
- dissolve(neighbor);
- /* There is a neighboring triangle on this edge, so this edge */
- /* becomes a boundary edge when this triangle is deleted. */
- hullsize++;
- }
- }
- /* Return the dead triangle to the pool of triangles. */
- triangledealloc(testtri.tri);
- virusloop = (triangle **) traverse(&viri);
- }
- /* Empty the virus pool. */
- poolrestart(&viri);
- }
-
- /*****************************************************************************/
- /* */
- /* regionplague() Spread regional attributes and/or area constraints */
- /* (from a .poly file) throughout the mesh. */
- /* */
- /* This procedure operates in two phases. The first phase spreads an */
- /* attribute and/or an area constraint through a (segment-bounded) region. */
- /* The triangles are marked to ensure that each triangle is added to the */
- /* virus pool only once, so the procedure will terminate. */
- /* */
- /* The second phase uninfects all infected triangles, returning them to */
- /* normal. */
- /* */
- /*****************************************************************************/
-
- void regionplague(
- double attribute,
- double area)
- {
- struct triedge testtri;
- struct triedge neighbor;
- triangle **virusloop;
- triangle **regiontri;
- struct edge neighborshelle;
- triangle ptr; /* Temporary variable used by sym() and onext(). */
- shelle sptr; /* Temporary variable used by tspivot(). */
-
- /* Loop through all the infected triangles, spreading the attribute */
- /* and/or area constraint to their neighbors, then to their neighbors' */
- /* neighbors. */
- traversalinit(&viri);
- virusloop = (triangle **) traverse(&viri);
- while (virusloop != (triangle **) NULL) {
- testtri.tri = *virusloop;
- /* A triangle is marked as infected by messing with one of its shell */
- /* edges, setting it to an illegal value. Hence, we have to */
- /* temporarily uninfect this triangle so that we can examine its */
- /* adjacent shell edges. */
- uninfect(testtri);
- /* Check each of the triangle's three neighbors. */
- for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
- /* Find the neighbor. */
- sym(testtri, neighbor);
- /* Check for a shell between the triangle and its neighbor. */
- tspivot(testtri, neighborshelle);
- /* Make sure the neighbor exists, is not already infected, and */
- /* isn't protected by a shell edge. */
- if ((neighbor.tri != dummytri) && !infected(neighbor)
- && (neighborshelle.sh == dummysh)) {
- /* Infect the neighbor. */
- infect(neighbor);
- /* Ensure that the neighbor's neighbors will be infected. */
- regiontri = (triangle **) poolalloc(&viri);
- *regiontri = neighbor.tri;
- }
- }
- /* Remark the triangle as infected, so it doesn't get added to the */
- /* virus pool again. */
- infect(testtri);
- virusloop = (triangle **) traverse(&viri);
- }
-
- /* Uninfect all triangles. */
- traversalinit(&viri);
- virusloop = (triangle **) traverse(&viri);
- while (virusloop != (triangle **) NULL) {
- testtri.tri = *virusloop;
- uninfect(testtri);
- virusloop = (triangle **) traverse(&viri);
- }
- /* Empty the virus pool. */
- poolrestart(&viri);
- }
-
- /*****************************************************************************/
- /* */
- /* carveholes() Find the holes and infect them. Find the area */
- /* constraints and infect them. Infect the convex hull. */
- /* Spread the infection and kill triangles. Spread the */
- /* area constraints. */
- /* */
- /* This routine mainly calls other routines to carry out all these */
- /* functions. */
- /* */
- /*****************************************************************************/
-
- void carveholes(
- double *holelist,
- int holes,
- double *regionlist,
- int regions)
- {
- struct triedge searchtri;
- struct triedge *regiontris;
- triangle **holetri;
- triangle **regiontri;
- point searchorg, searchdest;
- enum locateresult intersect;
- int i;
- triangle ptr; /* Temporary variable used by sym(). */
-
- if (regions > 0) {
- /* Allocate storage for the triangles in which region points fall. */
- regiontris = (struct triedge *) malloc(regions * sizeof(struct triedge));
- if (regiontris == (struct triedge *) NULL) {
- vTrace("Error: Out of memory.");
- exit(1);
- }
- }
-
- /* Initialize a pool of viri to be used for holes, concavities, */
- /* regional attributes, and/or regional area constraints. */
- poolinit(&viri, sizeof(triangle *), VIRUSPERBLOCK, POINTER, 0);
-
- /* Mark as infected any unprotected triangles on the boundary. */
- /* This is one way by which concavities are created. */
- infecthull();
-
- if (holes > 0) {
- /* Infect each triangle in which a hole lies. */
- for (i = 0; i < 2 * holes; i += 2) {
- /* Ignore holes that aren't within the bounds of the mesh. */
- if ((holelist[i] >= xmin) && (holelist[i] <= xmax)
- && (holelist[i + 1] >= ymin) && (holelist[i + 1] <= ymax)) {
- /* Start searching from some triangle on the outer boundary. */
- searchtri.tri = dummytri;
- searchtri.orient = 0;
- symself(searchtri);
- /* Ensure that the hole is to the left of this boundary edge; */
- /* otherwise, locate() will falsely report that the hole */
- /* falls within the starting triangle. */
- org(searchtri, searchorg);
- dest(searchtri, searchdest);
- if (counterclockwise(searchorg, searchdest, &holelist[i]) > 0.0) {
- /* Find a triangle that contains the hole. */
- intersect = locate(&holelist[i], &searchtri);
- if ((intersect != OUTSIDE) && (!infected(searchtri))) {
- /* Infect the triangle. This is done by marking the triangle */
- /* as infect and including the triangle in the virus pool. */
- infect(searchtri);
- holetri = (triangle **) poolalloc(&viri);
- *holetri = searchtri.tri;
- }
- }
- }
- }
- }
-
- /* Now, we have to find all the regions BEFORE we carve the holes, because */
- /* locate() won't work when the triangulation is no longer convex. */
- /* (Incidentally, this is the reason why regional attributes and area */
- /* constraints can't be used when refining a preexisting mesh, which */
- /* might not be convex; they can only be used with a freshly */
- /* triangulated PSLG.) */
- if (regions > 0) {
- /* Find the starting triangle for each region. */
- for (i = 0; i < regions; i++) {
- regiontris[i].tri = dummytri;
- /* Ignore region points that aren't within the bounds of the mesh. */
- if ((regionlist[4 * i] >= xmin) && (regionlist[4 * i] <= xmax) &&
- (regionlist[4 * i + 1] >= ymin) && (regionlist[4 * i + 1] <= ymax)) {
- /* Start searching from some triangle on the outer boundary. */
- searchtri.tri = dummytri;
- searchtri.orient = 0;
- symself(searchtri);
- /* Ensure that the region point is to the left of this boundary */
- /* edge; otherwise, locate() will falsely report that the */
- /* region point falls within the starting triangle. */
- org(searchtri, searchorg);
- dest(searchtri, searchdest);
- if (counterclockwise(searchorg, searchdest, ®ionlist[4 * i]) >
- 0.0) {
- /* Find a triangle that contains the region point. */
- intersect = locate(®ionlist[4 * i], &searchtri);
- if ((intersect != OUTSIDE) && (!infected(searchtri))) {
- /* Record the triangle for processing after the */
- /* holes have been carved. */
- triedgecopy(searchtri, regiontris[i]);
- }
- }
- }
- }
- }
-
- if (viri.items > 0) {
- /* Carve the holes and concavities. */
- plague();
- }
- /* The virus pool should be empty now. */
-
- for (i = 0; i < regions; i++) {
- if (regiontris[i].tri != dummytri) {
- /* Make sure the triangle under consideration still exists. */
- /* It may have been eaten by the virus. */
- if (regiontris[i].tri[3] != (triangle) NULL) {
- /* Put one triangle in the virus pool. */
- infect(regiontris[i]);
- regiontri = (triangle **) poolalloc(&viri);
- *regiontri = regiontris[i].tri;
- /* Apply one region's attribute and/or area constraint. */
- regionplague(regionlist[4 * i + 2], regionlist[4 * i + 3]);
- /* The virus pool should be empty now. */
- }
- }
- }
-
- /* Free up memory. */
- pooldeinit(&viri);
- if (regions > 0) {
- free(regiontris);
- }
- }
-
- /** **/
- /** **/
- /********* Carving out holes and concavities ends here *********/
-
- /*****************************************************************************/
- /* */
- /* highorder() Create extra nodes for quadratic subparametric elements. */
- /* */
- /*****************************************************************************/
-
- void highorder(void)
- {
- struct triedge triangleloop, trisym;
- struct edge checkmark;
- point newpoint;
- point torg, tdest;
- int i;
- triangle ptr; /* Temporary variable used by sym(). */
- shelle sptr; /* Temporary variable used by tspivot(). */
-
- /* The following line ensures that dead items in the pool of nodes */
- /* cannot be allocated for the extra nodes associated with high */
- /* order elements. This ensures that the primary nodes (at the */
- /* corners of elements) will occur earlier in the output files, and */
- /* have lower indices, than the extra nodes. */
- points.deaditemstack = (void *) NULL;
-
- traversalinit(&triangles);
- triangleloop.tri = triangletraverse();
- /* To loop over the set of edges, loop over all triangles, and look at */
- /* the three edges of each triangle. If there isn't another triangle */
- /* adjacent to the edge, operate on the edge. If there is another */
- /* adjacent triangle, operate on the edge only if the current triangle */
- /* has a smaller pointer than its neighbor. This way, each edge is */
- /* considered only once. */
- while (triangleloop.tri != (triangle *) NULL) {
- for (triangleloop.orient = 0; triangleloop.orient < 3;
- triangleloop.orient++) {
- sym(triangleloop, trisym);
- if ((triangleloop.tri < trisym.tri) || (trisym.tri == dummytri)) {
- org(triangleloop, torg);
- dest(triangleloop, tdest);
- /* Create a new node in the middle of the edge. Interpolate */
- /* its attributes. */
- newpoint = (point) poolalloc(&points);
- for (i = 0; i < 2 + nextras; i++) {
- newpoint[i] = 0.5 * (torg[i] + tdest[i]);
- }
- /* Set the new node's marker to zero or one, depending on */
- /* whether it lies on a boundary. */
- setpointmark(newpoint, trisym.tri == dummytri);
- if (useshelles) {
- tspivot(triangleloop, checkmark);
- /* If this edge is a segment, transfer the marker to the new node. */
- if (checkmark.sh != dummysh) {
- setpointmark(newpoint, mark(checkmark));
- }
- }
- /* Record the new node in the (one or two) adjacent elements. */
- triangleloop.tri[highorderindex + triangleloop.orient] =
- (triangle) newpoint;
- if (trisym.tri != dummytri) {
- trisym.tri[highorderindex + trisym.orient] = (triangle) newpoint;
- }
- }
- }
- triangleloop.tri = triangletraverse();
- }
- }
-
- /*****************************************************************************/
- /* */
- /* transfernodes() Read the points from memory. */
- /* */
- /*****************************************************************************/
-
- void transfernodes(
- double *pointlist,
- double *pointattriblist,
- int *pointmarkerlist,
- int numberofpoints,
- int numberofpointattribs)
- {
- point pointloop;
- double x, y;
- int i, j;
- int coordindex;
- int attribindex;
-
- inpoints = numberofpoints;
- mesh_dim = 2;
- nextras = numberofpointattribs;
- if (inpoints < 3) {
- vTrace("Error: Input must have at least three input points.");
- exit(1);
- }
-
- initializepointpool();
-
- /* Read the points. */
- coordindex = 0;
- attribindex = 0;
- for (i = 0; i < inpoints; i++) {
- pointloop = (point) poolalloc(&points);
- /* Read the point coordinates. */
- x = pointloop[0] = pointlist[coordindex++];
- y = pointloop[1] = pointlist[coordindex++];
- /* Read the point attributes. */
- for (j = 0; j < numberofpointattribs; j++) {
- pointloop[2 + j] = pointattriblist[attribindex++];
- }
- if (pointmarkerlist != (int *) NULL) {
- /* Read a point marker. */
- setpointmark(pointloop, pointmarkerlist[i]);
- } else {
- /* If no markers are specified, they default to zero. */
- setpointmark(pointloop, 0);
- }
- x = pointloop[0];
- y = pointloop[1];
- /* Determine the smallest and largest x and y coordinates. */
- if (i == 0) {
- xmin = xmax = x;
- ymin = ymax = y;
- } else {
- xmin = (x < xmin) ? x : xmin;
- xmax = (x > xmax) ? x : xmax;
- ymin = (y < ymin) ? y : ymin;
- ymax = (y > ymax) ? y : ymax;
- }
- }
-
- /* Nonexistent x value used as a flag to mark circle events in sweepline */
- /* Delaunay algorithm. */
- xminextreme = 10 * xmin - 9 * xmax;
- }
-
- /*****************************************************************************/
- /* */
- /* numbernodes() Number the points. */
- /* */
- /* Each point is assigned a marker equal to its number. */
- /* */
- /* Used when writenodes() is not called because no .node file is written. */
- /* */
- /*****************************************************************************/
-
- void numbernodes(void)
- {
- point pointloop;
- int pointnumber;
-
- traversalinit(&points);
- pointloop = pointtraverse();
- pointnumber = 0;
- while (pointloop != (point) NULL) {
- setpointmark(pointloop, pointnumber);
- pointloop = pointtraverse();
- pointnumber++;
- }
- }
-
- /*****************************************************************************/
- /* */
- /* writeelements() Write the triangles to an .ele file. */
- /* */
- /*****************************************************************************/
-
- void writeelements(
- int **trianglelist,
- double **triangleattriblist)
- {
- int *tlist;
- double *talist;
- int pointindex;
- int attribindex;
- struct triedge triangleloop;
- point p1, p2, p3;
- point mid1, mid2, mid3;
- int elementnumber;
- int i;
-
- /* Allocate memory for output triangles if necessary. */
- if (*trianglelist == (int *) NULL) {
- *trianglelist = (int *) malloc(triangles.items *
- ((order + 1) * (order + 2) / 2) * sizeof(int));
- if (*trianglelist == (int *) NULL) {
- vTrace("Error: Out of memory.");
- exit(1);
- }
- }
- /* Allocate memory for output triangle attributes if necessary. */
- if ((eextras > 0) && (*triangleattriblist == (double *) NULL)) {
- *triangleattriblist = (double *) malloc(triangles.items * eextras *
- sizeof(double));
- if (*triangleattriblist == (double *) NULL) {
- vTrace("Error: Out of memory.");
- exit(1);
- }
- }
- tlist = *trianglelist;
- talist = *triangleattriblist;
- pointindex = 0;
- attribindex = 0;
-
- traversalinit(&triangles);
- triangleloop.tri = triangletraverse();
- triangleloop.orient = 0;
- elementnumber = 0;
- while (triangleloop.tri != (triangle *) NULL) {
- org(triangleloop, p1);
- dest(triangleloop, p2);
- apex(triangleloop, p3);
- if (order == 1) {
- tlist[pointindex++] = pointmark(p1);
- tlist[pointindex++] = pointmark(p2);
- tlist[pointindex++] = pointmark(p3);
- } else {
- mid1 = (point) triangleloop.tri[highorderindex + 1];
- mid2 = (point) triangleloop.tri[highorderindex + 2];
- mid3 = (point) triangleloop.tri[highorderindex];
- tlist[pointindex++] = pointmark(p1);
- tlist[pointindex++] = pointmark(p2);
- tlist[pointindex++] = pointmark(p3);
- tlist[pointindex++] = pointmark(mid1);
- tlist[pointindex++] = pointmark(mid2);
- tlist[pointindex++] = pointmark(mid3);
- }
-
- for (i = 0; i < eextras; i++) {
- talist[attribindex++] = elemattribute(triangleloop, i);
- }
- triangleloop.tri = triangletraverse();
- elementnumber++;
- }
- }
-
- /*****************************************************************************/
- /* */
- /* main() or triangulate() Gosh, do everything. */
- /* */
- /* The sequence is roughly as follows. Many of these steps can be skipped, */
- /* depending on the command line switches. */
- /* */
- /* - Initialize constants and parse the command line. */
- /* - Read the points from a file and either */
- /* - triangulate them (no -r), or */
- /* - read an old mesh from files and reconstruct it (-r). */
- /* - Insert the PSLG segments (-p), and possibly segments on the convex */
- /* hull (-c). */
- /* - Read the holes (-p), regional attributes (-pA), and regional area */
- /* constraints (-pa). Carve the holes and concavities, and spread the */
- /* regional attributes and area constraints. */
- /* - Enforce the constraints on minimum angle (-q) and maximum area (-a). */
- /* Also enforce the conforming Delaunay property (-q and -a). */
- /* - Compute the number of edges in the resulting mesh. */
- /* - Promote the mesh's linear triangles to higher order elements (-o). */
- /* - Write the output files and print the statistics. */
- /* - Check the consistency and Delaunay property of the mesh (-C). */
- /* */
- /*****************************************************************************/
-
- void triangulate(
- char *triswitches,
- struct triangulateio *in,
- struct triangulateio *out,
- struct triangulateio *vorout)
- {
- double *holearray; /* Array of holes. */
- double *regionarray; /* Array of regional attributes and area constraints. */
-
- triangleinit();
- parsecommandline(1, &triswitches);
-
- transfernodes(in->pointlist, in->pointattributelist, in->pointmarkerlist,
- in->numberofpoints, in->numberofpointattributes);
-
- hullsize = delaunay(); /* Triangulate the points. */
-
- /* Ensure that no point can be mistaken for a triangular bounding */
- /* box point in insertsite(). */
- infpoint1 = (point) NULL;
- infpoint2 = (point) NULL;
- infpoint3 = (point) NULL;
-
- if (useshelles) {
- checksegments = 1; /* Segments will be introduced next. */
- /* Insert PSLG segments and/or convex hull segments. */
- insegments = formskeleton(in->segmentlist, in->segmentmarkerlist,
- in->numberofsegments);
- }
-
- holearray = in->holelist;
- holes = in->numberofholes;
- regionarray = in->regionlist;
- regions = in->numberofregions;
- /* Carve out holes and concavities. */
- carveholes(holearray, holes, regionarray, regions);
-
- /* Compute the number of edges. */
- edges = (3l * triangles.items + hullsize) / 2l;
-
- if (order > 1) {
- highorder(); /* Promote elements to higher polynomial order. */
- }
-
- out->numberofpoints = points.items;
- out->numberofpointattributes = nextras;
- out->numberoftriangles = triangles.items;
- out->numberofcorners = (order + 1) * (order + 2) / 2;
- out->numberoftriangleattributes = eextras;
- out->numberofedges = edges;
- if (useshelles) {
- out->numberofsegments = shelles.items;
- } else {
- out->numberofsegments = hullsize;
- }
- if (vorout != (struct triangulateio *) NULL) {
- vorout->numberofpoints = triangles.items;
- vorout->numberofpointattributes = nextras;
- vorout->numberofedges = edges;
- }
- /* If not using iteration numbers, don't write a .node file if one was */
- /* read, because the original one would be overwritten! */
- numbernodes(); /* We must remember to number the points. */
- writeelements(&out->trianglelist, &out->triangleattributelist);
-
- triangledeinit();
- }
-